Dual-use laser source comprising a cascaded array of hybrid distributed feedback lasers

    公开(公告)号:US10170888B2

    公开(公告)日:2019-01-01

    申请号:US15343080

    申请日:2016-11-03

    Abstract: The disclosed embodiments provide a laser source comprising a silicon waveguide formed in a silicon layer, and a cascaded array of hybrid distributed feedback (DFB) lasers formed by locating sections of III-V gain material over the silicon waveguide. Each DFB laser in the cascaded array comprises a section of III-V gain material located over the silicon waveguide, wherein the section of III-V gain material includes an active region that generates light, and a Bragg grating located between the III-V gain material and the silicon waveguide. This Bragg grating has a resonance frequency within a gain bandwidth of the section of III-V material and is transparent to frequencies that differ from the resonance frequency. Moreover, each DFB laser has a hybrid mode that resides partially in the III-V gain material and partially in silicon.

    Slow-light silicon optical modulator

    公开(公告)号:US09880405B2

    公开(公告)日:2018-01-30

    申请号:US15609554

    申请日:2017-05-31

    Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, a semiconductor layer in an SOI platform may include a photonic crystal having a group velocity of light that is less than that of the semiconductor layer. Moreover, an optical modulator (such as a Mach-Zehnder interferometer) may be implemented in the photonic crystal with a vertical junction in the semiconductor layer. During operation of the optical modulator, an input optical signal may be split into two different optical signals that feed two optical waveguides, and then subsequently combined into an output optical signal. Furthermore, during operation, time-varying bias voltages may be applied across the vertical junction in the optical modulator using contacts defined along a lateral direction of the optical modulator.

    SLOW-LIGHT SILICON OPTICAL MODULATOR
    7.
    发明申请

    公开(公告)号:US20170261772A1

    公开(公告)日:2017-09-14

    申请号:US15609554

    申请日:2017-05-31

    Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, a semiconductor layer in an SOI platform may include a photonic crystal having a group velocity of light that is less than that of the semiconductor layer. Moreover, an optical modulator (such as a Mach-Zehnder interferometer) may be implemented in the photonic crystal with a vertical junction in the semiconductor layer. During operation of the optical modulator, an input optical signal may be split into two different optical signals that feed two optical waveguides, and then subsequently combined into an output optical signal. Furthermore, during operation, time-varying bias voltages may be applied across the vertical junction in the optical modulator using contacts defined along a lateral direction of the optical modulator.

    Wavelength-tunable III-V/Si hybrid optical transmitter

    公开(公告)号:US10162199B2

    公开(公告)日:2018-12-25

    申请号:US15357358

    申请日:2016-11-21

    Abstract: An optical transmitter includes a reflective semiconductor optical amplifier (RSOA) coupled to an input end of a first optical waveguide. An end of the first optical waveguide provides a transmitter output for the optical transmitter. Moreover, a section of the first optical waveguide between the input end and the output end is optically coupled to a ring modulator that modulates an optical signal based on an electrical input signal. A passive ring filter (or a 1×N silicon-photonic switch and a bank of band reflectors) is connected to provide a mirror that reflects light received from the second optical waveguide back toward the RSOA to form a lasing cavity. Moreover, the ring modulator and the passive ring filter have different sizes, which causes a Vernier effect that provides a large wavelength tuning range for the lasing cavity in response to tuning the ring modulator and the passive ring filter.

Patent Agency Ranking