摘要:
A high-performance differential latch circuit which includes a differential amplifier circuit comprised of an NMOS transistor (27) serving as a constant current source, PMOS transistors (3, 4) and NMOS transistors (23,24), a latch circuit comprised of NMOS transistors (25, 26), and a switch circuit comprised of NMOS transistors (21,22,28) for alternately operating the differential amplifying function and latch function, the transistor (27) serving as the constant current source having a drain terminal directly connected to the transistors (23,24) and a source terminal directly connected to a ground voltage (2), whereby the differential latch circuit differentially amplifies the signals without the loss of the constant current source function during the differential amplification.
摘要:
An A/D converter block A/D1 converts an analog input signal Vin to a digital signal and outputs its D/A output. First SH/SUBT7, 8 sample the signal Vin and a voltage VRM at the same timing with said A/D conversion and output the results of subtraction of the respective sampling values and the D/A output during holding, respectively. The both results of subtraction are several tens mV and there is no need of taking account of the linearity of a differential amplifier DIFF11. During the sampling, a circuit SHR1 outputs the differential voltages between each reference tap voltage taken out from specific 2 points of the ladder-type resistor in the A/D converter block A/D1 and the voltage VRM while a differential amplifier DIFF12 applies the reference voltages to the next A/D converter block A/D2. Such operations are performed in each stage. Thus, it becomes possible to make any S/H circuit and amplifier of excellent linearity in the first stage unnecessary to reduce the electric power consumption.
摘要:
In a pipeline type A/D converter, a switch for sampling an analog potential signal has its other terminal in connection with an A/D converter, a D/A converter, a capacitor for subtraction. Even when frequency of the analog potential signal is raised such that input current is increased and a voltage drop is increased at the switch, there will be no error in the result of subtraction like in the conventional example where analog potential signal was directly input to A/D converter. Accordingly, a pipeline type A/D converter with low power dissipation and satisfactory frequency characteristics is obtained.
摘要:
An A/D converter includes a sample-hold circuit, A/D converting stages connected in series to the sample-hold circuit, and an encoder/latch circuit which adds 3-bit digital signals issued from the A/D converting stages to each other for outputting a signal of 9 bits. The sample-hold circuit and the A/D converting stages each include a differential amplifier. Differential outputs of each differential amplifier are short-circuited for a predetermined initial period in each sampling period.
摘要:
In a pipeline type A/D converter, a sample/hold.cndot.subtracter circuit of an A/D converter block of a first stage samples an analog voltage and outputs an offset voltage at a first phase, and subtracts an output voltage of an A/D converter from the sampled analog voltage in a second phase. An A/D converter of an A/D converter block of a succeeding stage subtracts the output voltage of the sample/hold.cndot.subtracter circuit of the first phase from the output voltage of the sample hold.cndot.subtracter circuit of the second phase, and converts the subtracted result into a digital code. The influence of an offset of a differential amplifier included in the sample/hold.cndot.subtracter circuit is removed so that A/D conversion of high accuracy is allowed.
摘要:
A ladder resistance (1) consisting of resistance elements (r1, r2, . . . , r8) connected in series with intermediate taps (T1, T2, . . . , T7) interposed is so arranged as to be folded back at its midpoint. Pairs of differential comparators (C1 and C7, C2 and C6, . . . ) which are connected to common intermediate taps are each disposed adjacently so as to be nearest to the intermediate tap to be connected thereto. Accordingly, wires connecting the differential comparators (C1, C2, . . . , C7) to the intermediate taps (T1, T2, . . . , T7) become shorter and an area of a semiconductor chip needed for arranging the wires can be reduced. Thus, reduction in area of the semiconductor chip needed for providing the device therein is achieved.
摘要:
A current driven D/A converter sets an OFF control voltage (BIAS3) for turning off NMOS transistors M12P, M12N, M22P, M22N, M32P and M32N at a voltage close to an ON control voltage (BIAS2). This makes it possible to reduce the swing of the control voltage (ON control voltage−OFF control voltage) of the NMOS transistors, and hence to reduce the noise due to charge injections through parasitic capacitances, and noise of a ground voltage or power supply voltage due to flowing of discharge currents from the parasitic capacitances to the ground or power supply at turn off of the transistors, thereby being able to offer a high performance current driven D/A converter.
摘要:
A current driven D/A converter sets an OFF control voltage (BIAS3) for turning off NMOS transistors M12P, M12N, M22P, M22N, M32P and M32N at a voltage close to an ON control voltage (BIAS2). This makes it possible to reduce the swing of the control voltage (ON control voltage—OFF control voltage) of the NMOS transistors, and hence to reduce the noise due to charge injections through parasitic capacitances, and noise of a ground voltage or power supply voltage due to flowing of discharge currents from the parasitic capacitances to the ground or power supply at turn off of the transistors, thereby being able to offer a high performance current driven D/A converter.
摘要:
A current driven D/A converter sets an OFF control voltage (BIAS3) for turning off NMOS transistors M12P, M12N, M22P, M22N, M32P and M32N at a voltage close to an ON control voltage (BIAS2). This makes it possible to reduce the swing of the control voltage (ON control voltage-OFF control voltage) of the NMOS transistors, and hence to reduce the noise due to charge injections through parasitic capacitances, and noise of a ground voltage or power supply voltage due to flowing of discharge currents from the parasitic capacitances to the ground or power supply at turn off of the transistors, thereby being able to offer a high performance current driven D/A converter.
摘要:
A cutting insert includes an insert body portion and a plurality of projecting portions provided integrally with the insert body portion. The projecting portion includes a cutting edge and includes projecting portion upper and lower surfaces, two projecting portion side surfaces, and a projecting portion side end surface extending therebetween. In the projecting portion, a round corner surface extends between the projecting portion upper surface and the projecting portion side end surface. The cutting edge is formed so as to include a corner formed along an edge of the round corner surface and such that the projecting portion side surface serves as a rake face. The projecting portion is designed such that a length between the two projecting portion side surfaces is smaller than a diameter of an inscribed circle defined on the insert body portion.