摘要:
An A/D converter block A/D1 converts an analog input signal Vin to a digital signal and outputs its D/A output. First SH/SUBT7, 8 sample the signal Vin and a voltage VRM at the same timing with said A/D conversion and output the results of subtraction of the respective sampling values and the D/A output during holding, respectively. The both results of subtraction are several tens mV and there is no need of taking account of the linearity of a differential amplifier DIFF11. During the sampling, a circuit SHR1 outputs the differential voltages between each reference tap voltage taken out from specific 2 points of the ladder-type resistor in the A/D converter block A/D1 and the voltage VRM while a differential amplifier DIFF12 applies the reference voltages to the next A/D converter block A/D2. Such operations are performed in each stage. Thus, it becomes possible to make any S/H circuit and amplifier of excellent linearity in the first stage unnecessary to reduce the electric power consumption.
摘要:
A multi-bit D/A converter which improves the linearity of an analog output relative to a digital input is provided. A switch control circuit (1) turns on D some of a plurality of switches (S1 to SM) which are arranged in ascending order starting with a switch determined by a start position determination circuit (3) and turns off the remaining switches, the number of switches turned on being dependent on a digital signal (DIG). The start position determination circuit (3) sequentially changes the switches (S1, S3, S5, . . . ) serving as a selection start position to determine the selection start position for each input of the digital signal (DIG) provided in synchronism with a clock signal (CLK).
摘要:
An object is to obtain a voltage comparator capable of high-accuracy voltage comparison. An input voltage (VIN) and a reference voltage (VREF) are connected to one electrode of a capacitor (C1) through switches (S1) and (S2), respectively. The other electrode of the capacitor (C1) is connected to the input portion of an inverter (INV1). The output portion of the inverter (INV1) is connected to the input portion of an inverter (INV3) and is also fed back to the input through a switch (S3). An inverter (INV11) is further connected in parallel with the inverter (INV1), wherein the input/output characteristics of the inverters (INV1, INV3 and INV11) are set equal.
摘要:
An A/D converter simplifies its circuit configuration without deteriorating accuracy in A/D conversion. A circuit is formed of a folding and interpolation type. A gain-variable pre-amplifier group 11 amplifies each of reference voltages Vref1 to VrefN and an analog input voltage Vin, to output the result to a folding amplifier group 12, while a gain-variable pre-amplifier group 21 amplifies each of reference voltages Vrr1 to VrrJ and the analog input voltage Vin, to output the result to a comparator group 24. Each of pre-amplifiers constituting the gain-variable pre-amplifier groups 11 and 21 has an amplification factor that varies in upper and lower comparison periods according to a clock control signal .PHI.cnt.
摘要:
In a sample hold circuit (6, 50, 60) capable of relaxing a dependency of a voltage of an analogue input signal on an ON resistance of a switch (2). In the sample hold circuit (6, 50, 60), plural reference voltages VrefN are supplied, and unit switches (11e) forming the switch (2) are selectively activated (an ON state) based on a comparison results (whether or not the voltage of the analogue input signal is greater than each reference voltage) from plural comparison circuits (13e) whose operations are performed based on the voltage of the analogue input signal (1).
摘要:
A majority logic circuit is supplied with output values of adjacent three comparators. The majority logic circuit outputs, as an output signal, the supplied three output values including at least two equal output values. Inverter circuits and AND circuits produce and output a read signal of an encoder which is a logical product between the output signal and an inverted signal of the output signal.
摘要:
A differential amplifier circuit is obtained in which an operating power source voltage is suppressed to a minimum necessary level. The differential amplifier circuit includes a bias circuit having a differential amplifier with NMOS transistors (11A, 11B, 12A and 12B) and PMOS transistors (13A and 13B). Sources of NMOS transistors (11A)and (11B) are commonly grounded. A bias voltage (VB1) is supplied to gates of the NMOS transistors (11A) and (11B). Drains of the NMOS transistors (11A) and (11B) are connected to sources of NMOS transistors (12A) and (12B), respectively. A gate and a drain of the NMOS transistor (12A) are short-circuited to each other with the drain connected to a drain of a PMOS transistor (13A). A bias voltage (VB4) is applied to a gate of the NMOS transistor (12B). A drain of the NMOS transistor (12B) is connected to a drain of the PMOS transistor (13B) whose gate and drain are shared by each other. Gates of the PMOS transistors (13A) and (13B) are connected to a bias terminal (72) while sources of the PMOS transistors (13A) and (13B) are commonly connected to a power source. The bias terminal (72) is connected to an input bias terminal of a differential amplifier.
摘要:
An A/D converter includes a resistor network generating a reference voltage, a level detector for detecting the level of an input analogue signal with a reference voltage from the resistor network as a reference, and an encoder for providing a digital signal by encoding the output of the level detector. The level detector includes a plurality of comparators for bilevel-processing the input analogue signal with a preselected voltage from the resistor connection nodes of the resistor network as a reference voltage. The resistor network comprises a plurality of resistor elements between a first node receiving a first reference voltage and a second node receiving a second reference voltage, which are interconnected to provide a voltage from an associated connection node that is 1/2.sup.j times the difference between said first reference voltage and said second reference voltage. The comparator includes capacitors for providing the difference between the input analogue signal and the reference voltage by a capacitor coupling, and an inverter amplifier for determining the positive or negative of the voltage change generated by the capacitors. This structure implements an A/D converter of high precision with less elements.
摘要:
A semiconductor integrated circuit includes a complementary MIS circuit including first PMIS and NMIS transistors with their drain electrodes connected together. The integrated circuit further includes a driving level-shift which includes a second PMIS transistor having its drain electrode grounded, and having its source electrode connected to the gate of the first PMIS transistor and to a V.sub.DD voltage supply terminal via a first resistor. The level-shift circuit further includes a second NMIS transistor having its drain electrode connected directly to the V.sub.DD voltage supply terminal, having its source electrode grounded via a second resistor, and having its gate electrode connected to the gate electrode of the second PMIS transistor. An input voltage is applied to the gate electrodes of the second PMIS and NMIS transistors.
摘要:
An improved parallel-type A/D converter is disclosed, which includes encoder 3 constituted by a pseudo-NMOS type ROM, and encoder 28 constituted by a pseudo-PMOS type ROM. These encoders are connected to the outputs of pre-encoder 2. Averaging circuit 29 receives binary data provided from two encoders to provide average value data of these as converted binary output data. Even in case of multi-addressing, an averaging circuit can provide correct data as converted data. As a result, an A/D converter which is not affected by noise or the like has been obtained.