Abstract:
A liquid treatment apparatus includes a liquid storing vessel, a first electrode, a second electrode at least partly arranged inside the vessel, a tubular first insulator surrounding a first-electrode lateral surface with a first space interposed therebetween, and including a first opening in an end surface in contact with the liquid, a tubular second insulator surrounding the first-electrode lateral surface inside the first insulator, a gas supply device supplying gas into the first space and ejecting the gas into the liquid through the first opening, and a power supply applying a voltage between the first and second electrodes and producing plasma. The second insulator is arranged with a second space interposed between the first and second insulators. Portions of the first and second insulators, those portions being positioned inside the vessel, are covered with the gas when the gas is supplied into the first space by the gas supply device.
Abstract:
A field-effect transistor includes a codoped layer made of AlxGa1-xN (0≦x≦1) and formed on a p-type Si substrate, a GaN layer formed on the codoped layer, and an AlGaN layer formed on the GaN layer. The codoped layer contains C and Si as impurity elements. The impurity concentration of C in the codoped layer is equal to or higher than 5×1017/cm3. The impurity concentration of Si in the codoped layer is lower than the impurity concentration of C. The impurity concentration of C in the GaN layer is equal to or lower than 1×1017/cm3. The thickness of the GaN layer is equal to or greater than 0.75 μm.
Abstract translation:场效应晶体管包括由Al x Ga 1-x N(0≦̸ x≦̸ 1)构成并且形成在p型Si衬底上的共掺层,在共掺层上形成的GaN层和形成在GaN层上的AlGaN层。 共掺层含有C和Si作为杂质元素。 共掺层中的C的杂质浓度等于或高于5×1017 / cm3。 共掺层中Si的杂质浓度低于C的杂质浓度.Ca层中的C的杂质浓度等于或低于1×1017 / cm3。 GaN层的厚度等于或大于0.75μm。
Abstract:
A nitride semiconductor structure of the present disclosure comprises a semiconductor substrate, and a layer formed over the semiconductor substrate and comprising plural nitride semiconductor layers. The semiconductor substrate has, from a side thereof near the layer comprising the plural nitride semiconductor layers, a surface region and an internal region in this order. The surface region has a resistivity of 0.1 Ωcm or more, and the internal region has a resistivity of 1000 Ωcm or more.
Abstract:
Provided is a semiconductor device in which electron mobility is improved by applying sufficiently large tensile stress in a predetermined direction without occurrence of cracks in a nitride semiconductor. The semiconductor device includes: substrate (101), electron transit layer (103) that is disposed on substrate (101) and is formed by GaN; and electron supply layer (104) that is disposed on electron transit layer (103) and is formed by AlGaN. A coefficient of thermal expansion of substrate (101) is different between a first direction in a main surface of substrate (101) and a second direction that is perpendicular to the first direction in the main surface, and tensile stress occurs in electron transit layer (103).
Abstract:
A nitride semiconductor device according to the present disclosure includes a substrate; a first nitride semiconductor layer which is formed on the substrate, and which has a C-plane as a main surface; a second nitride semiconductor layer which is formed on the first nitride semiconductor layer, and which has p-type conductivity; and a first opening which is formed in the second nitride semiconductor layer, and which reaches the first nitride semiconductor layer. The nitride semiconductor device further includes a third nitride semiconductor layer which is formed so as to cover the first opening in the second nitride semiconductor layer; a first electrode which is formed on the third nitride semiconductor layer so as to include a region of the first opening; and a second electrode which is formed on the rear surface of the substrate.
Abstract:
An object of the present invention is to provide a nitride semiconductor device and a nitride semiconductor substrate in each of which a nitride semiconductor layer formed on a silicon substrate is improved in crystallinity to realize a decrease in on-resistance of a field-effect transistor. The nitride semiconductor device includes a silicon substrate, and a first nitride semiconductor layer formed over the silicon substrate and including a nitride semiconductor, wherein a Si axial direction of the silicon substrate is different from a axial direction of the first nitride semiconductor layer.