摘要:
A tool for investigating a substrate, where the tool has a tool head for investigating the substrate, a chuck for disposing an upper surface of the substrate in proximity to the tool head, and an air bearing disposed on the tool head adjacent the substrate. The air bearing has a pressure source and a vacuum source, where the vacuum source draws the substrate toward the air bearing and the pressure source prevents the substrate from physically contacting the air bearing. The pressure source and the vacuum source work in cooperation to dispose the upper surface of the substrate at a known distance from the tool head. By using the air bearing as part of the tool in this manner, registration of the substrate to the tool head is accomplished relative to the upper surface of the substrate, not the back side of the substrate.
摘要:
A tool for investigating a substrate, where the tool has a tool head for investigating the substrate, a chuck for disposing an upper surface of the substrate in proximity to the tool head, and an air bearing disposed on the tool head adjacent the substrate. The air bearing has a pressure source and a vacuum source, where the vacuum source draws the substrate toward the air bearing and the pressure source prevents the substrate from physically contacting the air bearing. The pressure source and the vacuum source work in cooperation to dispose the upper surface of the substrate at a known distance from the tool head. By using the air bearing as part of the tool in this manner, registration of the substrate to the tool head is accomplished relative to the upper surface of the substrate, not the back side of the substrate.
摘要:
A tool for investigating a substrate, where the tool has a tool head for investigating the substrate, a chuck for disposing an upper surface of the substrate in proximity to the tool head, and an air bearing disposed on the tool head adjacent the substrate. The air bearing has a pressure source and a vacuum source, where the vacuum source draws the substrate toward the air bearing and the pressure source prevents the substrate from physically contacting the air bearing. The pressure source and the vacuum source work in cooperation to dispose the upper surface of the substrate at a known distance from the tool head. By using the air bearing as part of the tool in this manner, registration of the substrate to the tool head is accomplished relative to the upper surface of the substrate, not the back side of the substrate.
摘要:
An edge-handling chuck, a system for holding and rotating a test substrate at a high speed and a method for chucking a rotating substrate are disclosed. The Chuck includes a plate having a central axis, a fluid opening and a top surface with a varied topography characterized by symmetry about the central axis. The topography is such that a volume flow rate of fluid between the fluid opening and a periphery of the top surface sufficient to counteract substrate sagging is significantly less than a volume flow rate needed for a similar but flat-surfaced chuck to similarly counteract such sagging. The system may further include a spindle motor and a gas system that supplies gas through the fluid opening to a gap between the top surface and a back surface of the substrate. A radial velocity of the fluid through the gap is approximately constant.
摘要:
Disclosed herein is an apparatus for providing passive correction for thermal effects on a mounted mechanical component. Further disclosed is a wafer inspection system employing the passive thermal effect correction apparatus.
摘要:
Disclosed herein is an apparatus for providing passive correction for thermal effects on a mounted mechanical component. Further disclosed is a wafer inspection system employing the passive thermal effect correction apparatus.
摘要:
The present invention is directed to a high speed, spinning chuck for use in a semiconductor wafer inspection system. The chuck of the present disclosure is configured with a turbulence-reducing lip. Spinning of the chuck produces radial airflows proximal to a surface of the wafer and proximal to the bottom of the chuck. The turbulence-reducing lip of the chuck of the present disclosure directs the radial airflows off of the top surface of the wafer and the bottom surface of the chuck in a manner that minimizes the size of the low pressure zone formed between these radial airflows. The minimization of the low pressure zone reduces air turbulence about the periphery of the chuck and substrate, thereby reducing the possibility of contaminants in the system being directed onto the surface of the substrate by such air turbulence.
摘要:
Methods and systems for inspection of a wafer are provided. One method includes illuminating the wafer with light at a first wavelength that penetrates into the wafer and light at a second wafer that does not substantially penetrate into the wafer. The method also includes generating output signals responsive to light from the wafer resulting from the illuminating step. In addition, the method includes detecting defects on the wafer using the output signals. The method further includes determining if the defects are subsurface defects or surface defects using the output signals.
摘要:
The present invention provides methods, kits and compositions for the detection of an analyte. In the methods of the invention, a complex is formed between two or more analyte specific probes (ASP) and an analyte. The analyte specific probes each have a portion of a polymerase which interact to form a functional polymerase complex upon binding of the ASP to the analyte. The functional polymerase complex then generates a detectable signal which is indicative of the presence and/or amount of the analyte in the sample.
摘要:
The present invention provides methods, kits and compositions for the detection of an analyte. The invention is particularly suited for the detection and quantification of analytes in solution. In the methods of the invention a complex is formed between two or more analyte specific probes (ASP) and an analyte. The reactive moieties of the probes interact upon the binding of the analyte specific probes to the analyte. The reactive moieties generate a nucleic acid cleavage product which is detected and indicative of the presence of the analyte.