摘要:
The invention relates to an inner heat exchanger for high-pressure refrigerants which is also used as an accumulator or refrigerant collector in air conditioning circuits. The inner heat exchanger includes an outer cylinder arranged and an inner cylinder arranged therein. The inner cylinder is designed as a bent flat sheet or tube with microchannels for refrigerant under high pressure. The liquid refrigerant under low pressure is collectable within the inner cylinder. Between inner cylinder and outer cylinder are formed channels in which the vaporous refrigerant under low pressure flows from a low-pressure inlet to a low-pressure outlet.
摘要:
The invention relates to an inner heat exchanger for high-pressure refrigerants which is also used as an accumulator or refrigerant collector in air conditioning circuits. The inner heat exchanger includes an outer cylinder arranged and an inner cylinder arranged therein. The inner cylinder is designed as a bent flat sheet or tube with microchannels for refrigerant under high pressure. The liquid refrigerant under low pressure is collectable within the inner cylinder. Between inner cylinder and outer cylinder are formed channels in which the vaporous refrigerant under low pressure flows from a low-pressure inlet to a low-pressure outlet.
摘要:
A device and method for heat distribution in a hybrid motor vehicle are provided. The device includes an engine cooling circuit; and a refrigerant circuit for a combined operation in a refrigeration heat pump mode and a reheating mode, includes an evaporator, a compressor, a heat exchanger to supply heat from the refrigerant to air being conditioned for a passenger compartment; and a heat exchanger to transfer heat between a refrigerant of the refrigerant circuit and coolant of the engine cooling circuit, wherein the heat exchanger operates as an evaporator for the heat transfer, and as a condenser for the heat transfer from the condensing refrigerant to the coolant.
摘要:
A refrigeration plant with refrigerant evaporator arrangement and process for parallel air and battery contact cooling. The refrigeration plant includes a refrigerant evaporator arrangement for parallel air and battery contact cooling, having with a refrigerant compressor and a condenser An evaporator with an assigned controllable expansion member for air cooling and an evaporator as a battery contact cooler with an assigned controllable expansion member for battery cooling are provided. A throttling member is located between the evaporator and the tap of the assigned controllable expansion member.
摘要:
The invention relates to a combined cooling plant/heat pump for use in motor vehicles for the cooling, heating and dehumidification of the vehicle interior. A refrigerant circuit is thermally coupled to the ventilation system over an internal heat exchanger having two functional units. The functional units are switchable as the condenser/gas cooler of the heat pump (in heating operation) and as the evaporator of the cooling plant (in cooling operation). In a combined dehumidification-reheating operation, one of these functional units is operable as an evaporator and the other as condenser/gas cooler.
摘要:
A refrigeration plant with refrigerant evaporator arrangement and process for parallel air and battery contact cooling. The refrigeration plant includes a refrigerant evaporator arrangement for parallel air and battery contact cooling, having with a refrigerant compressor and a condenser An evaporator with an assigned controllable expansion member for air cooling and an evaporator as a battery contact cooler with an assigned controllable expansion member for battery cooling are provided. A throttling member is located between the evaporator and the tap of the assigned controllable expansion member.
摘要:
The invention includes a refrigerant circuit for a cooling operation and a heat pump operation. The refrigerant circuit has a high pressure area and a low pressure area, including at least one heat source/heat sink, a compressor, an expansion device, at least one thermal interior space module, and an internal heat exchanger. The internal heat exchanger has a high pressure side part and a low pressure side part, wherein the high pressure side part is disposed between the expansion device and the heat source/heat sink. The invention also includes at least one metering device through which the high pressure side part of the internal heat exchanger is operable during the heat pump operation at a medium pressure level intermediate a pressure level in the high pressure area and a pressure level in the low pressure area of the refrigerant circuit.
摘要:
In a heat exchanger unit for conditioning a first fluid, particularly a refrigerant in an air conditioning system, including a heat exchanger, the heat exchanger includes first and second tube element units for heat exchange between a first fluid flowing through the tube elements and a second fluid flowing over the tube elements, wherein the first fluid is supplied first to the first tube element unit so as to flow upwardly therethrough and via an intermediate outlet connector to a compressor stage from where it is transferred to the top of the second tube element unit which is disposed above the first tube element unit and flows downwardly through the second tube element unit to an expansion stage wherein the energy released during expansion in the expansion stage is utilized for the compression of the first fluid in the compressor stage.
摘要:
An air conditioning unit for vehicles with work-doing expansion of the carbon dioxide is provided, the air conditioning unit including a combined refrigeration and heat pump circuit, wherein the air conditioning unit is switchably configured to change a flow direction of a refrigerant for switchable operation from the refrigeration circuit to the heat pump circuit. A method for operating the air conditioning unit is also provided.
摘要:
A heat exchanger unit is disclosed, the heat exchanger unit including a first tube element unit, a second tube element unit, and an engine machine apparatus having an expansion step unit and a compression step unit. Each of the tube element units is adapted to condition a fluid flowing therethrough. Desirably, the fluid is compressed in the compression step unit and expanded in the expansion step unit in such a manner that technical operation is transferred from the expansion step unit to the compression step unit so that an inner recovery of energy is made possible.