Abstract:
The Distributed Software Defined Network (dSDN) disclosed herein is an end-to-end architecture that enables secure and flexible programmability across a network with full lifecycle management of services and infrastructure applications (fxDeviceApp). The dSDN also harmonizes application deployment across the network independent of the hardware vendor. As a result, the dSDN simplifies the network deployment lifecycle from concept to design to implementation to decommissioning.
Abstract:
The Distributed Software Defined Network (dSDN) disclosed herein is an end-to-end architecture that enables secure and flexible programmability across a network with full lifecycle management of services and infrastructure applications (fxDeviceApp). The dSDN also harmonizes application deployment across the network independent of the hardware vendor. As a result, the dSDN simplifies the network deployment lifecycle from concept to design to implementation to decommissioning.
Abstract:
A client-server session is automatically initiated between a client-type device an a cloud-based server in a cloud-based computing environment based on user-defined parameters, thereby providing convenience and ease of use for a user for uploading, sharing and downloading media content to and from a content-sharing website. A user-preference database stores user-preference information, such as information relating to media-content-type information, media-content-source information, media-content-destination information, user-uploading-preference information, and/or uplink-network-preference and downlink-network-preference information. A rule is generated for uploading and/or downloading a designated media-content type to the content-sharing website based on the stored user preference information and at least one calendar event available from a calendar application. An event trigger signal is generated if the conditions of the rule are satisfied, and a communication controller then establishes a communication link to the content-sharing website and uploads and/or downloads the designated media content.
Abstract:
Embodiments of the present disclosure describe device, methods, computer-readable media and system configurations for providing a device-to-device (“D2D”) tapping service (“DTS”) layer. In various embodiments, a DTS layer of a communication stack of a computing device may receive, from an application executing within an application layer of the communication stack, a request for a resource. In various embodiments, the DTS layer may determine whether the resource is available locally on the computing device. In various embodiments, the DTS layer may issue a domain name system (“DNS”) request through a network layer of the communication stack to facilitate transparent access by the application to the resource on a remote computing device, where it is determined that the resource is unavailable locally on the computing device. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure describe device, methods, computer-readable media and system configurations for providing a device-to-device (“D2D”) tapping service (“DTS”) layer. In various embodiments, a DTS layer of a communication stack of a computing device may receive, from an application executing within an application layer of the communication stack, a request for a resource. In various embodiments, the DTS layer may determine whether the resource is available locally on the computing device. In various embodiments, the DTS layer may issue a domain name system (“DNS”) request through a network layer of the communication stack to facilitate transparent access by the application to the resource on a remote computing device, where it is determined that the resource is unavailable locally on the computing device. Other embodiments may be described and/or claimed.
Abstract:
A hierarchical cell structure that may be applicable to any wireless communications network utilizing cells. One or more characteristics associated with a mobile device configured to communicate with the base stations via a wireless communications protocol are determined while the mobile device is communicating with a base station. The one or more characteristics are utilized to determine a subsequent base station to be the target of a handoff procedure.
Abstract:
An apparatus to support handover for non-integrated radio devices is presented. In one embodiment, the apparatus includes a peer interface and radio resource control logic. The radio resource control logic includes a proxy commutatively coupled to a second proxy via the peer interface. The second proxy is a part of other radio resource control logic. The proxies are operable to support handover between different radio access technologies.
Abstract:
Embodiments of systems and methods for upgrading an airlink in wireless system are described herein. Other embodiments may be described and claimed.
Abstract:
Embodiments provide components of a communication network that may facilitate efficient optimization of the communication network. In various embodiments, network gateway selection for incoming subscriber stations may be allocated to one or more components that make intelligent allocation determinations. Additionally, in various embodiments, control of the communication network may also be allocated to various components.
Abstract:
Techniques to permit scheduling of mixed radio access technologies. In some cases, a first radio access technology mode of a base station is scheduled during a first time region and a second radio access technology mode of a base station is scheduled during a sleep mode of the first radio access technology mode. In some cases, a first radio access technology mode of a base station is scheduled during a first time region and a second radio access technology mode of a base station is scheduled during an unused portion of the first time region. In some cases, a femto-base station is scheduled to snoop for local mobile stations during a sleep mode. Inactive regions of mobile stations are scheduled during a portion of sleep modes of the radio access technology modes.