Abstract:
A method of designing a multi-tier three-dimensional integrated circuit (3D IC) is provided that allows the use of two-dimensional integrated circuit (2D IC) design tools. When a 2D IC design tool is used, a macro for each of the tiers indicating areas available and unavailable for placement of circuit elements in each tier is created, and the macros are superimposed on one another. Circuit elements to be implemented in the 3D IC, such as logic cells and interconnects, are shrunk and then placed and repopulated on the superimposed macro. The repopulated circuit elements on the superimposed macro are then partitioned into tiers. Monolithic inter-tier via (MIV) placement and tier-to-tier routing are designed to provide electrical connections between circuit elements in different tiers. Power, performance and area (PPA) optimization may also be performed to optimize the 3D IC layout.
Abstract:
A device comprising a first die, a second die coupled to a first die, and a polymer planarization layer. The second die includes a side portion and a backside portion. The polymer planarization layer is coupled to the first die and the second die such that the polymer planarization layer is coupled to the side portion and the backside portion of the second die. The polymer planarization layer includes an organic polymer. The polymer planarization layer may include a self planarizing material.
Abstract:
Systems and methods relate to power delivery networks (PDNs) for monolithic three-dimensional integrated circuits (3D-ICs). A monolithic 3D-IC includes a first die adjacent to and in contact with power/ground bumps. A second die is stacked on the first die, the second die separated from the power/ground bumps by the first die. One or more bypass power/ground vias and one or more monolithic inter-tier vias (MIVs) are configured to deliver power from the power/ground bumps to the second die.
Abstract:
Methods and apparatus for implementing a synthetic jet to cool a device are provided. Examples of the techniques keep a device case cool enough to be hand-held, while allowing a higher temperature of a circuit component located in the case, to maximize circuit performance. In an example, provided is a mobile device including a synthetic jet configured to transfer heat within the mobile device. The synthetic jet can be embedded in a circuit board inside the mobile device such that the circuit board defines at least a portion of a chamber of the synthetic jet and defines an orifice of the synthetic jet. The device case can define at least one fluid channel inside the mobile device. Also, the circuit board can define a synthetic jet outlet configured to direct a fluid at the at least one fluid channel. Also provided are methods for controlling a synthetic jet.
Abstract:
An intellectual property (IP) block design methodology for three-dimensional (3D) integrated circuits may comprise folding at least one two-dimensional (2D) block that has one or more circuit components into a 3D block that has multiple tiers, wherein the one or more circuit components in the folded 2D block may be distributed among the multiple tiers in the 3D block. Furthermore, one or more pins may be duplicated across the multiple tiers in the 3D block and the one or more duplicated pins may be connected to one another using one or more intra-block through-silicon-vias (TSVs) placed inside the 3D block.
Abstract:
An integrated circuit includes inter-digital transducers in a silicon die, where the inter-digital transducers are driven to excite phonons in the silicon die to modulate its thermal conductivity. The thermal conductivity may be increased by exciting acoustic phonons in the silicon die, so that heat dissipation is improved, or the thermal conductivity may be decreased by exciting optical phonons so that heat dissipation is reduced. In conjunction with power management, the thermal conductivity is increased or decreased depending upon the power states of various functional units in the silicon die and depending upon various temperature sensors.
Abstract:
To enable low cost pre-bond testing for a three-dimensional (3D) integrated circuit, a backbone die may have a fully connected two-dimensional (2D) clock tree and one or more non-backbone die may have multiple isolated 2D clock trees. In various embodiments, clock sinks on the backbone die and the non-backbone die can be connected using multiple through-silicon-vias and the isolated 2D clock trees in the non-backbone die can be further connected via a Detachable tree (D-tree), which may comprise a rectilinear minimum spanning tree representing a shortest interconnect among the sinks associated with the 2D clock trees in the non-backbone die. Accordingly, the backbone die and the non-backbone die can be separated and individually tested prior to bonding using one clock probe pad, and the D-tree may be easily removed from the non-backbone die subsequent to the pre-bond testing by burning fuses at the sinks associated with the 2D clock trees.