Abstract:
A method, an apparatus, and a computer program product for data communication are provided. The method may include providing a plurality of data channels on a communications link, determining unused bandwidth as a difference between total bandwidth provided by the communications link and bandwidth used by the plurality of data channels, allocating the unused bandwidth to a virtual channel, scheduling the plurality of data channels and the virtual channel in accordance with a time-based multiplexing scheme, and disabling interface circuitry used to couple the transmitter to the communications link when the virtual channel is scheduled. Each of the plurality of data channels may be assigned to a source of data to be transmitted on the communications link.
Abstract:
A method, an apparatus, and a computer program product for data communication are provided. The method may include providing a plurality of data channels on a communications link, determining unused bandwidth as a difference between total bandwidth provided by the communications link and bandwidth used by the plurality of data channels, allocating the unused bandwidth to a virtual channel, scheduling the plurality of data channels and the virtual channel in accordance with a time-based multiplexing scheme, and disabling interface circuitry used to couple the transmitter to the communications link when the virtual channel is scheduled. Each of the plurality of data channels may be assigned to a source of data to be transmitted on the communications link.
Abstract:
Methods and apparatuses are described that facilitate data communication between a first slave device and a second slave device across a serial bus interface. In one configuration, a master device receives, from a first slave device, a request to send a masked-write datagram to a second slave device via a bus, wherein the masked-write datagram is addressed to a radio frequency front end (RFFE) register of the second slave device. The masked-write datagram includes a mask field identifying at least one bit to be changed in the RFFE register and a data field providing a value of the at least one bit to be changed in the RFFE register. The master device detects whether the first slave device is authorized to send the masked-write datagram to the second slave device and permits the first slave device to send the masked-write datagram to the second slave device if authorization is detected.
Abstract:
Methods and apparatuses are described that facilitate the communication of data between a transmitter and a receiver across a serial bus interface. In one configuration, a transmitter generates a datagram based on a 16-bit address and a mask-and-data pair burst length, the 16-bit address including a most significant byte (MSB) and a least significant byte (LSB), compares the MSB to a receiver base address maintained in a shadow register, compares the mask-and-data pair burst length to a receiver masked-write burst length maintained in the shadow register, and sends the datagram to the receiver via the bus interface when: the MSB is equal to the receiver base address maintained in the shadow register, and the mask-and-data pair burst length is equal to the receiver masked-write burst length maintained in the shadow register.
Abstract:
Disclosed aspects relate to methods and apparatus for coexistent radio frequency (RF) systems in a wireless device. Control of a wireless device includes detecting when a turn on signal is issued to a first radio system, and then controlling the second radio system to either modify the operation of receiver circuitry in the second radio system to protect components within that system, or modify transmit circuitry to stop transmissions for protecting components within one radio system potentially affected by transmission from the other radio system in the wireless device. Disclosed also is monitoring of transmission states of the radio systems based on reading messages between the first and second radio systems and issuing a notification message based thereon such that one of the radio systems may suspend monitoring of a transmit channel for permission to transmit in order to reduce power consumption due to such monitoring of the channel.
Abstract:
Disclosed aspects relate to methods and apparatus for coexistent radio frequency (RF) systems in a wireless device. Control of a wireless device includes detecting when a turn on signal is issued to a first radio system, and then controlling the second radio system to either modify the operation of receiver circuitry in the second radio system to protect components within that system, or modify transmit circuitry to stop transmissions for protecting components within one radio system potentially affected by transmission from the other radio system in the wireless device. Disclosed also is monitoring of transmission states of the radio systems based on reading messages between the first and second radio systems and issuing a notification message based thereon such that one of the radio systems may suspend monitoring of a transmit channel for permission to transmit in order to reduce power consumption due to such monitoring of the channel.
Abstract:
Methods and apparatuses are described that facilitate the communication of data between a transmitter and a receiver across a serial bus interface. In one configuration, a transmitter generates a datagram based on a register address, detects whether the register address is within a high data rate (HDR) access address range, and sends a payload of the datagram to the receiver according to a HDR mode when the register address is within the HDR access address range. In another configuration, the transmitter generates a datagram including at least a command field and a data field, sends the command field to the receiver according to a single data rate (SDR) mode, wherein the command field indicates a transition to a high data rate (HDR) mode for sending the data field, and sends the data field to the receiver according to the HDR mode.
Abstract:
A method, an apparatus, and a computer program product for data communication are provided. The method may include providing a frame of encoded data, generating a synchronization symbol to precede the encoded data when the frame is transmitted over a communication link, the synchronization symbol providing an identification of a type of the frame in accordance with an encoding scheme. The synchronization symbol may be encoded using a redundant coding scheme to support error correction for the identification of the type of frame. The frame may have a predefined fixed length.