Abstract:
Antenna tuning circuitry includes an antenna tuning node, an antenna tuning switch, and a resonant tuning circuit. The antenna tuning node is coupled to a resonant conduction element of an antenna. The antenna tuning switch and the resonant tuning circuit are coupled in series between the antenna tuning switch and the antenna tuning node, such that the resonant tuning circuit is between the antenna tuning node and the antenna tuning switch. The resonant tuning circuit is configured to resonate at one or more harmonic frequencies generated by the antenna tuning switch such that a high impedance path is formed between the antenna tuning switch and the antenna tuning node at harmonic frequencies generated by the antenna tuning switch. Accordingly, harmonic interference generated by the antenna tuning switch is prevented from reaching the antenna, while simultaneously allowing for tuning of the antenna.
Abstract:
RF switching circuitry includes an RF switch coupled between an input node and an output node. Distortion compensation circuitry is coupled in parallel with the RF switch between the input node and the output node. The RF switch is configured to selectively pass an RF signal from the input node to the output node based on a first switching control signal. The distortion compensation circuitry is configured to boost a portion of the RF signal that is being compressed by the RF switch when the amplitude of the RF signal is above a predetermined threshold by selectively injecting current into one of the input node or the output node. Boosting a portion of the RF signal that is being compressed by the RF switch allows a signal passing through the RF switch to remain substantially linear, thereby improving the performance of the RF switching circuitry.
Abstract:
Disclosed is a harmonic cancellation circuit for an RF switch branch having a first transistor with a first gate terminal and a first body terminal, a second transistor having a second gate terminal coupled to the first body terminal, and having a second body terminal coupled to the first gate terminal. Also included is a first resistor coupled between a first coupling node and the second body terminal, and a second resistor coupled between a second coupling node and the first body terminal, wherein the first transistor and second transistor are adapted to generate an inverse phase third harmonic signal relative to a third harmonic signal generated by the RF switch branch, such that the inverse phase third harmonic signal is output through the first resistor and the second resistor to the RF switch branch to reduce the third harmonic signal.
Abstract:
Antenna tuning circuitry includes an antenna tuning node, an antenna tuning switch, and a resonant tuning circuit. The antenna tuning node is coupled to a resonant conduction element of an antenna. The antenna tuning switch and the resonant tuning circuit are coupled in series between the antenna tuning switch and the antenna tuning node, such that the resonant tuning circuit is between the antenna tuning node and the antenna tuning switch. The resonant tuning circuit is configured to resonate at one or more harmonic frequencies generated by the antenna tuning switch such that a high impedance path is formed between the antenna tuning switch and the antenna tuning node at harmonic frequencies generated by the antenna tuning switch. Accordingly, harmonic interference generated by the antenna tuning switch is prevented from reaching the antenna, while simultaneously allowing for tuning of the antenna.
Abstract:
Disclosed is a digital communication control system having a serial bus buffer that includes a primary interface adapted to support serial communication over a primary bus, a buffered interface adapted to support serial communication over a buffered bus, and a controller coupled between the primary bus and the buffered bus. The primary bus is coupled to a first device and at least one second device and the buffered bus is coupled to at least one third device. The controller is adapted to receive a first data signal and a clock signal at the primary interface and replicate the first data signal and the clock signal at the buffered interface.
Abstract:
RF switching circuitry includes an RF switch coupled between an input node and an output node. Distortion compensation circuitry is coupled in parallel with the RF switch between the input node and the output node. The RF switch is configured to selectively pass an RF signal from the input node to the output node based on a first switching control signal. The distortion compensation circuitry is configured to boost a portion of the RF signal that is being compressed by the RF switch when the amplitude of the RF signal is above a predetermined threshold by selectively injecting current into one of the input node or the output node. Boosting a portion of the RF signal that is being compressed by the RF switch allows a signal passing through the RF switch to remain substantially linear, thereby improving the performance of the RF switching circuitry.
Abstract:
An apparatus, which includes a first electronic device, a first nonlinear capacitance compensation circuit, and a capacitance compensation control circuit, is disclosed. The first electronic device has a first nonlinear capacitance and is coupled to the first nonlinear capacitance compensation circuit, which has a first compensation capacitance and receives a first compensation control signal. The capacitance compensation control circuit adjusts the first compensation capacitance using the first compensation control signal to at least partially linearize the first nonlinear capacitance.
Abstract:
Disclosed is a harmonic cancellation circuit for an RF switch branch having a first transistor with a first gate terminal and a first body terminal, a second transistor having a second gate terminal coupled to the first body terminal, and having a second body terminal coupled to the first gate terminal. Also included is a first resistor coupled between a first coupling node and the second body terminal, and a second resistor coupled between a second coupling node and the first body terminal, wherein the first transistor and second transistor are adapted to generate an inverse phase third harmonic signal relative to a third harmonic signal generated by the RF switch branch, such that the inverse phase third harmonic signal is output through the first resistor and the second resistor to the RF switch branch to reduce the third harmonic signal.
Abstract:
An apparatus, which includes a first electronic device, a first nonlinear capacitance compensation circuit, and a capacitance compensation control circuit, is disclosed. The first electronic device has a first nonlinear capacitance and is coupled to the first nonlinear capacitance compensation circuit, which has a first compensation capacitance and receives a first compensation control signal. The capacitance compensation control circuit adjusts the first compensation capacitance using the first compensation control signal to at least partially linearize the first nonlinear capacitance.
Abstract:
Disclosed is a digital communication control system having a serial bus buffer that includes a primary interface adapted to support serial communication over a primary bus, a buffered interface adapted to support serial communication over a buffered bus, and a controller coupled between the primary bus and the buffered bus. The primary bus is coupled to a first device and at least one second device and the buffered bus is coupled to at least one third device. The controller is adapted to receive a first data signal and a clock signal at the primary interface and replicate the first data signal and the clock signal at the buffered interface.