摘要:
Introducing an underfill material over contact pads on a surface of an integrated circuit substrate; and ablating the introduced underfill material to expose an area of the contact pads using temporally coherent electromagnetic radiation. A method including first ablating an underfill material to expose an area of contact pads on a substrate using temporally coherent electromagnetic radiation; introducing a solder to the exposed area of the contact pads; and second ablating the underfill material using temporally coherent electromagnetic radiation. A method including introducing an underfill material over contact pads on a surface of an integrated circuit substrate; defining an opening in the underfill material to expose an area of the contact pads using temporally coherent electromagnetic radiation; introducing a solder material to the exposed area of the contact pads; and after introducing the solder, removing the sacrificial material.
摘要:
Introducing an underfill material over contact pads on a surface of an integrated circuit substrate; and ablating the introduced underfill material to expose an area of the contact pads using temporally coherent electromagnetic radiation. A method including first ablating an underfill material to expose an area of contact pads on a substrate using temporally coherent electromagnetic radiation; introducing a solder to the exposed area of the contact pads; and second ablating the underfill material using temporally coherent electromagnetic radiation. A method including introducing an underfill material over contact pads on a surface of an integrated circuit substrate; defining an opening in the underfill material to expose an area of the contact pads using temporally coherent electromagnetic radiation; introducing a solder material to the exposed area of the contact pads; and after introducing the solder, removing the sacrificial material.
摘要:
A method including introducing a passivation material over contact pads on a surface of an integrated circuit substrate; patterning a sacrificial material on the passivation material to define openings in the sacrificial material to the contact pads; introducing solder to the contact pads; and after introducing the solder, removing the sacrificial material with the proviso that, where the sacrificial material is a photosensitive material, removing comprises using temporally coherent electromagnetic radiation. A method including introducing a passivation material over contact pads; exposing the contact pads; patterning a photosensitive material on the passivation material; introducing solder to the contact pads; and after introducing the solder, removing the photosensitive material using temporally coherent electromagnetic radiation. A method including introducing a passivation material over contact pads; exposing the contact pads; patterning a non-photosensitive material on the passivation material; introducing solder to the contact pads; and after introducing the solder, removing the non-photosensitive material.
摘要:
Embodiments of the present disclosure are directed to die adhesive films for integrated circuit (IC) packaging, as well as methods for forming and removing die adhesive films and package assemblies and systems incorporating such die adhesive films. A die adhesive film may be transparent to a first wavelength of light and photoreactive to a second wavelength of light. In some embodiments, the die adhesive film may be applied to a back or “inactive” side of a die, and the die surface may be detectable through the die adhesive film. The die adhesive film may be cured and/or marked with laser energy having the second wavelength of light. The die adhesive film may include a thermochromic dye and/or nanoparticles configured to provide laser mark contrast. UV laser energy may be used to remove the die adhesive film in order to expose underlying features such as TSV pads.
摘要:
Underfill material flow control for reduced die-to-die spacing in semiconductor packages and the resulting semiconductor packages are described. In an example, a semiconductor apparatus includes first and second semiconductor dies, each having a surface with an integrated circuit thereon coupled to contact pads of an uppermost metallization layer of a common semiconductor package substrate by a plurality of conductive contacts, the first and second semiconductor dies separated by a spacing. A barrier structure is disposed between the first semiconductor die and the common semiconductor package substrate and at least partially underneath the first semiconductor die. An underfill material layer is in contact with the second semiconductor die and with the barrier structure, but not in contact with the first semiconductor die.