摘要:
A method for forming a electrically isolated semiconductor devices in a silicon body. A trench is formed in a selected region of the body. A barrier material is deposited over sidewalls of the trench. Portions of the barrier material are removed from a first sidewall portion of the trench to expose such first sidewall portion of the trench while leaving portions of such barrier material on a second sidewall portion of the trench to form a barrier layer thereon. A dielectric material is deposited in the trench, a portion of dielectric material being deposited on the exposed first sidewall portion of the trench and another portion of such deposited dielectric material being deposited on the barrier material. The dielectric material is annealed in an oxidizing environment to densify such deposited dielectric material, the barrier layer inhibiting oxidation of the said second sidewall portion of the trench. A plurality of the semiconductor devices is formed in the silicon body with such devices being electrically isolated by the dielectric material in the trench.
摘要:
A method is provided for fabricating a first and second MOSFET transistors in different electrically isolated active areas of a semiconductor body, each one of the transistors having a plurality of layers. A first gate oxide layer and a first poly-crystalline silicon layer are deposited over the semiconductor body over the active areas. Trenches are etched in said first gate oxide and poly-crystalline silicon layers and said semiconductor body to delineate the first and second active areas, thereby forming first delineated gate oxide layer and poly-crystalline silicon layers coextensive with the first active area. Material is deposited in said trenches to form the active area isolations, the active area isolations having a top surface above said semiconductor body. A masking layer is then formed over said first and second active areas and selective portions of it are removed to expose said second active area. The masking layer and the active area isolations together form a mask defining an opening coextensive with the second active area with the active area isolations defining said opening. Material through the opening to form a second gate oxide layer and a second poly-crystalline layer, such second layer and second poly-crystalline layer being coextensive with the second active area. The first transistor with the first delineated gate oxide and poly-crystalline layer as a pair of the plurality of layers of the first transistor and the second transistor with the second gate oxide layer and second poly-crystalline layer as a pair of the plurality of layers of the second transistor.
摘要:
The present invention provides a semiconductor structure in which different types of devices are located upon a specific crystal orientation of a hybrid substrate that enhances the performance of each type of device. In the semiconductor structure of the present invention, a dual trench isolation scheme is employed whereby a first trench isolation region of a first depth isolates devices of different polarity from each other, while second trench isolation regions of a second depth, which is shallower than the first depth, are used to isolate devices of the same polarity from each other. The present invention further provides a dual trench semiconductor structure in which pFETs are located on a (110) crystallographic plane, while nFETs are located on a (100) crystallographic plane. In accordance with the present invention, the devices of different polarity, i.e., nFETs and pFETs, are bulk-like devices.
摘要:
The present invention provides a semiconductor structure in which different types of devices are located upon a specific crystal orientation of a hybrid substrate that enhances the performance of each type of device. In the semiconductor structure of the present invention, a dual trench isolation scheme is employed whereby a first trench isolation region of a first depth isolates devices of different polarity from each other, while second trench isolation regions of a second depth, which is shallower than the first depth, are used to isolate devices of the same polarity from each other. The present invention further provides a dual trench semiconductor structure in which pFETs are located on a (110) crystallographic plane, while nFETs are located on a (100) crystallographic plane. In accordance with the present invention, the devices of different polarity, i.e., nFETs and pFETs, are bulk-like devices.
摘要:
The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a Si-containing layer having a crystal orientation and a biaxial compressive strain. The term “biaxial compressive stress” is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing layer; and creating a biaxial strain in the silicon-containing layer.
摘要:
The present invention provides a semiconductor structure in which different types of devices are located upon a specific crystal orientation of a hybrid substrate that enhances the performance of each type of device. In the semiconductor structure of the present invention, a dual trench isolation scheme is employed whereby a first trench isolation region of a first depth isolates devices of different polarity from each other, while second trench isolation regions of a second depth, which is shallower than the first depth, are used to isolate devices of the same polarity from each other. The present invention further provides a dual trench semiconductor structure in which pFETs are located on a (110) crystallographic plane, while nFETs are located on a (100) crystallographic plane. In accordance with the present invention, the devices of different polarity, i.e., nFETs and pFETs, are bulk-like devices.
摘要:
Methods and structures for relieving stresses in stressed semiconductor liners. A stress liner that enhances performance of either an NFET or a PFET is deposited over a semiconductor to cover the NFET and PFET. A disposable layer is deposited to entirely cover the stress liner, NFET and PFET. This disposable layer is selectively recessed to expose only the single stress liner over a gate of the NFET or PFET that is not enhanced by such stress liner, and then this exposed liner is removed to expose a top of such gate. Remaining portions of the disposable layer are removed, thereby enhancing performance of either the NFET or PFET, while avoiding degradation of the NFET or PFET not enhanced by the stress liner. The single stress liner is a tensile stress liner for enhancing performance of the NFET, or it is a compressive stress liner for enhancing performance of the PFET.
摘要:
A method for reducing hot carrier reliability problems within an integrated circuit device. The method includes forming a shallow trench isolation structure incorporated with the device by filling a trench with a photoresist plug and removing a portion of the photoresist plug to a level below the depth of a channel also incorporated with the device. A nitride liner disposed within the trench under the photoresist plug is then recessed to a level substantially equal to the level of the photoresist material, which is then removed. The method further includes the deposition of oxide fill within the trench, thereby encapsulating the recessed nitride liner.
摘要:
A method for manufacturing an integrated circuit having a plurality of semiconductor devices including an n-type field effect transistor and a p-type field effect transistor on a semiconductor wafer by creating a spacer having a first width for the n-type field effect transistor and creating a spacer having a second width for the p-type field effect transistor, the first width being greater than the second width and depositing silicide material on the semiconductor wafer such that tensile mechanical stresses are formed within a channel of the n-type field effect transistor and compressive stresses are formed within a channel of the p-type field effect transistor.
摘要:
A semiconductor device and method of manufacturing the same are provided. A trench is formed in a semiconductor substrate. A thin oxide liner is preferably formed on surfaces of the trench. After formation of the oxide liner, first regions of the semiconductor substrate are masked, leaving second regions thereof exposed. N-type devices are to be formed in the first regions and p-type devices are to be formed in the second regions. N-type ions may then be implanted into sidewalls of the trenches in the second regions. The mask is stripped and formation of the semiconductor device may be carried out in a conventional manner. The n-type ions are preferably only implanted into sidewalls where PMOSFETs are formed.