摘要:
A conduction heat transfer connection is made between a heat source and a heat sink which is flexible so as to adapt to variations in distance between the source and sink and which maintains the required force on the heat source to obtain the required heat transfer across the junction therebetween. The connection consists of a heat conductive metallic foil bundle of sufficient thickness to contact sufficient surface area of the heat source to provide the required heat transfer and of sufficient thinness to be flexible enough to absorb the expansion and contraction due to temperature changes as well as the differences in distance between the heat source and sink and of sufficient length to contact at or near the other end thereof the heat sink.
摘要:
Monitoring of cooling of an electronic component is provided, which includes: determining a current thermal resistance associated with one or more of the electronic component, a heat sink coupled to the electronic component, or a thermal interface coupling the electronic component and the heat sink; and determining, by a processor, whether the current thermal resistance exceeds a set thermal resistance threshold, and responsive to the current thermal resistance exceeding the set thermal resistance threshold, indicating a thermal resistance fault. As an enhancement, rate of change over time of the thermal resistance is determined, and compared against a rate of change threshold, and if exceeding the threshold, a rate of change thermal resistance warning is provided.
摘要:
A cooling apparatus is provided which includes one or more coolant-cooled structures attached to one or more electronic components, one or more coolant conduits, and one or more coolant manifolds. The coolant-cooled structure(s) includes one or more coolant-carrying channels, and the coolant manifolds includes one or more rotatable manifold sections. One coolant conduit couples in fluid communication a respective rotatable manifold section and the coolant-carrying channel(s) of a respective coolant-cooled structure. The respective rotatable manifold section is rotatable relative to another portion of the coolant manifold to facilitate detaching of the coolant-cooled structure from its associated electronic component while maintaining the coolant-cooled structure in fluid communication with the respective rotatable manifold section through the one coolant conduit, which in one embodiment, is a substantially rigid coolant conduit.
摘要:
An apparatus for facilitating servicing of a liquid-cooled electronics rack is provided. The apparatus includes a coolant tank, a coolant pump in fluid communication with the coolant tank, multiple parallel-connected coolant supply lines coupling the coolant pump to a coolant supply port of the apparatus, and a coolant return port and a coolant return line coupled between the coolant return port and the coolant tank. Each coolant supply line includes a coolant control valve for selectively controlling flow of coolant therethrough pumped by the coolant pump from the coolant tank. At least one coolant supply line includes at least one filter, and one coolant supply line is a bypass line with no filter. When operational, the apparatus facilitates filling of coolant into a cooling system of a liquid-cooled electronics rack by allowing for selective filtering of coolant inserted into the cooling system.
摘要:
A method is provided for facilitating cooling of an electronic component. The method includes: providing a refrigerant loop configured for refrigerant to flow through the loop; coupling a compressor in fluid communication with the loop, wherein a first portion of the loop resides upstream of a refrigerant inlet of the compressor, and a second portion resides downstream; and disposing a controllable thermoelectric array in thermal communication with the refrigerant loop. The thermoelectric array is disposed with the first portion of the refrigerant loop at least partially in thermal contact with the first side of the array, and the second portion of the loop at least partially in thermal contact with a second side of the array. The array is controlled to ensure that refrigerant in the refrigerant loop entering the compressor is in a superheated thermodynamic state.
摘要:
Apparatuses and methods are provided for facilitating cooling of an electronic component. The apparatus includes a vapor-compression refrigeration system. The vapor-compression refrigeration system includes an expansion component, an evaporator, a compressor, and a condenser coupled in fluid communication via a refrigerant flow path. The evaporator is coupled to and cools the electronic component. The apparatus further includes a contaminant extractor coupled in fluid communication with the refrigerant flow path. The extractor includes a refrigerant boiling filter and a heater. At least a portion of refrigerant passing through the refrigerant flow path passes through the refrigerant boiling filter, and the heater provides heat to the refrigerant boiling filter to boil refrigerant passing through the filter. By boiling refrigerant passing through the filter, contaminants are extracted from the refrigerant, and are deposited in the refrigerant boiling filter.
摘要:
A vapor condenser is provided which includes a three-dimensional folded structure which defines, at least in part, a set of coolant-carrying channels and a set of vapor condensing channels, with the coolant-carrying channels being interleaved with and extending parallel to the vapor condensing channels. The folded structure includes a thermally conductive sheet with multiple folds in the sheet. One side of the sheet is a vapor condensing surface, and the opposite side of the sheet is a coolant-cooled surface, with at least a portion of the coolant-cooled surface defining the coolant-carrying channels, and being in contact with coolant within the coolant-carrying channels. The vapor condenser further includes, in one embodiment, a top plate, and first and second end manifolds which are coupled to opposite ends of the folded structure and in fluid communication with the coolant-carrying channels to facilitate flow of coolant through the coolant-carrying channels.
摘要:
A heat sink, and cooled electronic structure and cooled electronic apparatus utilizing the heat sink, are provided. The heat sink is fabricated of a thermally conductive structure which includes one or more coolant-carrying channels and one or more vapor-condensing channels. A membrane is disposed between the coolant-carrying channel(s) and the vapor-condensing channel(s). The membrane includes at least one vapor-permeable region, at least a portion of which overlies a portion of the coolant-carrying channel(s) and facilitates removal of vapor from the coolant-carrying channel(s) to the vapor-condensing channel(s). The heat sink further includes one or more coolant inlets coupled to provide a first liquid coolant flow to the coolant-carrying channel(s), and a second liquid coolant flow to condense vapor within the vapor-condensing channel(s).
摘要:
Apparatus and method for facilitating servicing of a liquid-cooled electronics rack are provided. The apparatus includes a coolant tank, a coolant pump in fluid communication with the coolant tank, multiple parallel-connected coolant supply lines coupling the coolant pump to a coolant supply port of the apparatus, and a coolant return port and a coolant return line coupled between the coolant return port and the coolant tank. Each coolant supply line includes a coolant control valve for selectively controlling flow of coolant therethrough pumped by the coolant pump from the coolant tank. At least one coolant supply line includes at least one filter, and one coolant supply line is a bypass line with no filter. When operational, the apparatus facilitates filling of coolant into a cooling system of a liquid-cooled electronics rack by allowing for selective filtering of coolant inserted into the cooling system.
摘要:
An apparatus is provided for cooling an electronics rack, which includes an electronic subsystem across which air passing through the rack flows. A cooling unit provides, via system coolant supply and return manifolds, system coolant in parallel to the electronic subsystem and an air-to-liquid heat exchanger disposed to cool, in normal-mode, air passing through the rack. A controller monitors coolant associated with the cooling unit and automatically transitions the cooling apparatus from normal-mode to failure-mode responsive to detecting a failure of the coolant. In transitioning to failure-mode, multiple isolation valves are employed in switching to a serial flow of system coolant from the electronic subsystem to the heat exchanger for rejecting, via the system coolant, heat from the electronic subsystem to air passing across the heat exchanger.