摘要:
An apparatus for facilitating servicing of a liquid-cooled electronics rack is provided. The apparatus includes a coolant tank, a coolant pump in fluid communication with the coolant tank, multiple parallel-connected coolant supply lines coupling the coolant pump to a coolant supply port of the apparatus, and a coolant return port and a coolant return line coupled between the coolant return port and the coolant tank. Each coolant supply line includes a coolant control valve for selectively controlling flow of coolant therethrough pumped by the coolant pump from the coolant tank. At least one coolant supply line includes at least one filter, and one coolant supply line is a bypass line with no filter. When operational, the apparatus facilitates filling of coolant into a cooling system of a liquid-cooled electronics rack by allowing for selective filtering of coolant inserted into the cooling system.
摘要:
Cooling apparatuses, cooled electronic modules and methods of fabrication are provided for fluid immersion-cooling of an electronic component(s). The cooled electronic module includes a substrate supporting the electronic component(s), and the cooling apparatus couples to the substrate, and includes a housing at least partially surrounding and forming a compartment about the electronic component(s). Additionally, the cooling apparatus includes a fluid and a deionization structure disposed within the compartment. The electronic component is at least partially immersed within the fluid, and the fluid is a water-based fluid. The deionization structure includes deionizing material, which ensures deionization of the fluid within the compartment. The deionization structure facilitates boiling heat transfer from the electronic component(s) to a condenser structure disposed in the compartment. Transferred heat is subsequently conducted to, for example, a liquid-cooled cold plate or an air-cooled heat sink coupled to the housing for cooling the condenser structure.
摘要:
A heat sink and method of fabrication are provided for removing heat from an electronic component(s). The heat sink includes a heat sink base and frame. The base has a first coefficient of thermal expansion (CTE), and includes a base surface configured to couple to the electronic component to facilitate removal of heat. The frame has a second CTE, and is configured to constrain the base surface in opposing relation to the electronic component, wherein the first CTE is greater than the second CTE. At least one of the heat sink base or frame is configured so that heating of the heat sink base results in a compressive force at the base surface of the heat sink base towards the electronic component that facilitates heat transfer from the electronic component. A thermal interface material is disposed between the base surface and the electronic component.
摘要:
A cooling apparatus and method of fabrication are provided for facilitating removal of heat from a heat generating electronic device. The cooling apparatus includes a thermally conductive base having a substantially planar main surface, and a plurality of thermally conductive pin fins wire-bonded to the main surface of the thermally conductive base and disposed to facilitate the transfer of heat from the thermally conductive base. The thermally conductive base can be a portion of the electronic device to be cooled or a separate structure coupled to the electronic device to be cooled. If a separate structure, the thermally conductive base has a coefficient of thermal expansion within a defined range of a coefficient of thermal expansion of the electronic device. In one implementation, the wire-bonded pin fins are discrete, looped pin fins separately wire-bonded to the main surface and spaced less than 300 micrometers apart in an array.
摘要:
Apparatus and method for facilitating servicing of a liquid-cooled electronics rack are provided. The apparatus includes a coolant tank, a coolant pump in fluid communication with the coolant tank, multiple parallel-connected coolant supply lines coupling the coolant pump to a coolant supply port of the apparatus, and a coolant return port and a coolant return line coupled between the coolant return port and the coolant tank. Each coolant supply line includes a coolant control valve for selectively controlling flow of coolant therethrough pumped by the coolant pump from the coolant tank. At least one coolant supply line includes at least one filter, and one coolant supply line is a bypass line with no filter. When operational, the apparatus facilitates filling of coolant into a cooling system of a liquid-cooled electronics rack by allowing for selective filtering of coolant inserted into the cooling system.
摘要:
An electronic module substrate assembly and fabrication method, the assembly providing good thermal conductivity between an electronic device and an aqueous coolant, while maintaining physical separation between the coolant and electronic device, and relieving mechanical stresses caused by mismatches in thermal coefficients of expansion of materials within the device assembly. The assembly includes a substrate, at least one electronic device, and a preformed, thermally conductive, impermeable barrier. The barrier is preformed into a plurality of regions, some of which are bonded to other structures. One barrier region preferably forms a fluid tight seal with the substrate perimeter. At least one other barrier region forms a low thermal resistance bond with the at least one electronic device. When incorporated into an electronic module assembly including a module cap, the substrate assembly provides physical separation between a cooling fluid introduced into the module cap, and both the substrate and electronic devices.
摘要:
An electronic module, substrate assembly, and fabrication method, the assembly providing thermal conduction between an electronic device to be cooled and an aqueous coolant, while maintaining physical separation between the coolant and electronic device. The assembly includes a substrate, one or more electronic devices to be cooled, and a multilayer, impermeable barrier. The multilayer barrier includes a first layer, providing mechanical support for a second layer. The second, thinner layer provides an impermeable barrier, and a high effective thermal conductivity path between an electronic device and a cooling fluid in contact with an upper surface of the second barrier layer. Mechanical stresses are minimized by appropriate material selection for the first layer, and a thin second layer. When incorporated into an electronic module assembly including a module cap, the substrate assembly provides physical separation between a cooling fluid introduced into the module cap, and both the substrate and electronic devices.
摘要:
Method and apparatus are provided for detecting a defect in a cold plate, configured for cooling an electronics component. The method includes: establishing a first fluid flow through the cold plate, the first fluid flow being at a first temperature; impinging a second fluid flow onto the interface surface, the second fluid flow being at a second temperature, the first temperature and the second temperature being different temperatures; obtaining an isotherm mapping of the interface surface of the cold plate while the first fluid flow passes through the cold plate and the second fluid flow impinges onto the interface surface; and using the isotherm mapping to determine whether the cold plate has a defect. In one embodiment, an infrared-transparent manifold is employed in impinging the second fluid flow onto the interface surface, and the isotherm mapping of the interface surface is obtained through the infrared-transparent manifold.
摘要:
A method of fabricating a heat sink includes preparing a surface of a graphite-based substrate and removing particulate matter generated from the preparation of the surface of the substrate. A metal-based coating is applied at the surface of the prepared substrate. The prepared substrate having the metal-based coating is arranged to form a heat sink structure.
摘要:
A thermal dissipation structure and method are provided which include a heat sink having a surface configured to couple to a surface of an electronic component for facilitating removal of heat from the component. The heat sink surface and the electronic component surface comprise dissimilar materials with different coefficients of thermal expansion. The heat sink surface has a pattern of channels therein which define multiple heat sink substructures. Each heat sink substructure includes a portion of the heat sink surface. The portions of the heat sink surface are coplanar and provide a reduced distance to neutral point across the heat sink surface. When the portions of the heat sink surface are bonded to the electronic component surface, shear stress within the bond is reduced.