摘要:
Graphitic nanotubes, which include tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
摘要:
Graphitic nanotubes, which include tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
摘要:
Graphitic nanotubes, which include tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
摘要:
Graphitic nanotubes, which include tubular fullerenes (commonly called "buckytubes") and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
摘要:
Graphitic nanotubes, which include tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
摘要:
A new method for preparing a supported catalyst is herein provided. A carbon nanotube structure such as a rigid porous structure is formed from single walled carbon nanotubes. A metal catalyst is then loaded or deposited onto the carbon nanotube structure. The loaded carbon nanotube is preferably ground to powder form.
摘要:
A new method for preparing a supported catalyst is herein provided. A carbon nanotube structure such as a rigid porous structure is formed from single walled carbon nanotubes. A metal catalyst is then loaded or deposited onto the carbon nanotube structure. The loaded carbon nanotube is preferably ground to powder form.
摘要:
A new method for preparing a supported catalyst is herein provided. The supported catalyst comprises a carbon nanotube network structure containing metal catalysts. The metal catalyst may be loaded onto functionalized carbon nanotubes before forming the carbon nanotube network structure. Alternatively, the metal catalyst may be loaded onto the carbon nanotube network structures themselves.
摘要:
An electrically conductive composite comprising a polyvinylidene fluoride polymer or copolymer and carbon nanotubes is provided. Preferably, carbon nanotubes may be present in the range of about 0.5-20% by weight of the composite. The composites are prepared by dissolving the polymer in a first solvent to form a polymer solution and then adding the carbon nanotubes into the solution. The solution is mixed using an energy source such as a sonicator or a Waring blender. A precipitating component is added to precipitate out a composite comprising the polymer and the nanotubes. The composite is isolated by filtering the solution and drying the composite.
摘要:
A new method for preparing a supported catalyst is herein provided. A carbon nanotube structure such as a rigid porous structure is formed from single walled carbon nanotubes. A metal catalyst is then loaded or deposited onto the carbon nanotube structure. The loaded carbon nanotube is preferably ground to powder form.