摘要:
An integrated laser-based light source that generates an output light beam having a controlled intensity. The light source comprises a package, a laser, a light sensor, and a beam splitter. The beam splitter is mounted in the package, together with the laser and the light sensor. The laser has one and only one light-emitting face from which it radiates a light beam as a radiated light beam. The light sensor generates an electrical signal representing the intensity of light energy falling on it. The beam splitter divides the radiated light beam into a fraction and a remainder, the remainder being the output light beam. The beam splitter operates by diffraction, scattering, or transmission to direct the fraction of the radiated light beam towards the light sensor.
摘要:
An integrated laser-based light source that generates an output light beam having a controlled intensity. The light source comprises a package in which are mounted a laser, a light sensor and a coupler. The laser has one and only one light-emitting face from which a light beam is radiated as a radiated light beam. The light sensor generates an electrical signal representing the intensity of light energy falling it. The coupler couples a fraction of the radiated light beam to the light sensor, and provides the remainder of the radiated light beam as the output light beam. Since the light coupled to the light sensor by the coupler is a fraction of the radiated light beam, the electrical signal generated by the light sensor also represents the intensities of the radiated light beam and of the output light beam. A suitable control circuit, when fed with the electrical signal generated by the light sensor, can control the laser current to hold the electrical signal generated by the light sensor to a predetermined value that corresponds to the output light beam having a predetermined intensity.
摘要:
An integrated laser-based light source that generates an output light beam having a controlled intensity. The light source comprises a package in which are mounted a laser, a light sensor and a coupler. The laser has one and only one light-emitting face from which a light beam is radiated as a radiated light beam. The light sensor generates an electrical signal representing the intensity of light energy falling it. The coupler couples a fraction of the radiated light beam to the light sensor, and provides the remainder of the radiated light beam as the output light beam. Since the light coupled to the light sensor by the coupler is a fraction of the radiated light beam, the electrical signal generated by the light sensor also represents the intensities of the radiated light beam and of the output light beam. A suitable control circuit, when fed with the electrical signal generated by the light sensor, can control the laser current to hold the electrical signal generated by the light sensor to a predetermined value that corresponds to the output light beam having a predetermined intensity.
摘要:
A vertical-cavity surface-emitting laser that generates light having a fixed direction of polarization. The laser has a plane light-generating region sandwiched between a first conductive mirror region and a second conductive mirror region. The first conductive mirror region has an opposite conductivity mode from the second conductive mirror region. The first conductive mirror region has a remote surface substantially parallel to the light-generating region and an electrode formed on the remote surface. The electrode bounds a light emission port from which the light is emitted in a direction defining an axis. A reduced-conductivity region is formed in the first conductive mirror region surrounding the axis and extending from the remote surface towards the light-emitting region to define a core region in the first conductive mirror region. The light emission port and/or the core region has first and second dimensions in orthogonal directions in a plane parallel to the light-generating region. The first dimension is greater than the second dimension to set the direction of polarization of the light to the direction of the first dimension.
摘要:
Method and apparatus for determining the distance a sheet of paper, or other reflective or transmissive substrate material with a suitable, approximately planar surface, has moved in a given direction. The substrate is illuminated by reflection or transmission of light at non-normal incidence, and a linear array of N uniformly spaced light sensors is provide to receive and sense light issuing from the illuminated substrate. This produces a first or reference array of light signal strengths s.sub.1 (k) (k=1,2, . . . , N). The substrate is then moved in the given direction, and a second array of signal strengths s.sub.2 (k) (k=1, 2, . . . , N) is produced. A cross-correlation function C(K), formed from consecutive portions of the first and second light signal strength arrays, is then examined to determine the distance the substrate has moved in the given direction. A maximum in the cross-correlation function C(K) at K=K.sub.0 corresponds to displacement of the substrate in the given direction by a distance approximately equal to (MF)(K.sub.0 -i)d, where i is selected positive integer determined by the initial position of the substrate, the distance d is determined from the known spacing of the light sensors, and MF is the system optical magnification factor. The cross-correlation function can be computed with uniform or non-uniform weights in the sum. This one-dimensional approach is extended to determining the vector of two-dimensional movement of the substrate, including translation, rotation and scaling, in a two-dimensional plane.
摘要:
Measurement devices, systems, and methods to measure a high field conductivity of a fluid are provided herein. The measurement device includes a fluid cell, a pair of electrodes, a voltage switch, and a measurement unit. The fluid cell is on an inclined plane to receive the fluid. The pair of electrodes are connected to the fluid cell. The pair of electrodes are spaced apart from one another to receive the fluid therebetween and positioned parallel to one another to pass an electrical current therethrough. The power unit provides a high voltage power supply to one electrode of the pair of electrodes. The measurement unit measures the electrical current that passes between the pair of electrodes through the fluid.
摘要:
Hard imaging methods, hard imaging device fabrication methods, hard imaging devices, hard imaging device optical scanning systems, and articles of manufacture are described. According to one embodiment, a hard imaging method includes providing image data corresponding to a hard image to be formed; generating light responsive to the image data; scanning the light to form a latent image corresponding to the hard image to be formed; accessing correction data corresponding to scanning errors of a scan lens intermediate a rotating reflection device and a photoconductor; and modifying the image data using the correction data before the generating, the modifying comprising modifying to reduce the introduction of image errors resulting from the scanning using the scan lens.
摘要:
An example hard imaging device includes an interface to access image data corresponding to images to be formed using the hard imaging device. The example hard imaging device further includes processing circuitry in communication with the interface to access the image data, to access correction data corresponding to a geometric distortion of a scan lens of an optical scanning system of the hard imaging device, and to modify the image data according to the correction data to reduce image errors introduced during optical scanning of the image data using the optical scanning system.
摘要:
At least some aspects of the disclosure are directed towards densitometers and methods of determining optical density of printed images upon media. According to one example, an optical density determination apparatus includes a first light source configured to emit a first light beam in a first direction towards a substrate; a second light source configured to emit a second light beam in a second direction towards the substrate, the second direction being different than the first direction; a first sensor configured to sense light of the first light beam reflected from the substrate; a second sensor configured to sense light of the second light beam reflected from the substrate; and wherein the first and second sensors are configured to provide signals indicative of the light sensed by the first and second sensors and which are useable to determine optical density of the substrate.
摘要:
An electrode array with embedded thin-film transistors is fabricated with a self-aligned imprint lithography process. In an embodiment the electrode array is built over a flexible, conductive, substrate, in an alternative embodiment the electrode array is built on a curved substrate. In an embodiment, the electrode array is incorporated into a printer, and is coated with a passivation layer having openings for each electrode of the array. The printer develops an image by selectively charging electrodes of the array, the openings of each electrode being exposed to an electrophoretic ink. Charged particles of the electrophoretic ink migrate to charged electrodes, thereby forming an image that is transferred to a printing substrate such as paper.