摘要:
A hip resurfacing femoral prosthesis has a partial ball component having an outer surface shaped to conform to an acetabular socket and has a mating sleeve component with an internal bore adapted to receive a femoral head. The head has been shaped and dimensioned to engage the bore and is retained by bone ingrowth, an interference fit or by bone cement. The ball component and sleeve axes may be offset to reposition the outer surface.
摘要:
A hip resurfacing femoral prosthesis has a partial ball component having an outer surface shaped to conform to an acetabular socket and has a mating sleeve component with an internal bore adapted to receive a femoral head. The head has been shaped and dimensioned to engage the bore and is retained by bone ingrowth, an interference fit or by bone cement. The ball component and sleeve axes may be offset to reposition the outer surface.
摘要:
A utility knife including a housing (19), two parallel knife holders slidingly disposed substantially parallel to each other inside the front section of the housing; different blades (5) are positioned on the two knife holders; each push button (6) is movably disposed on top of one knife holder (3); a strip-shaped aperture (17) is provided on top of the inner wall of the housing (19); the strip-shaped aperture has two grooves (1e), parallel to each other, for receiving the two push buttons and for allowing the two push buttons (6) to slide along the two parallel grooves; and a plurality of recesses (1a) are distributed inside each groove; each push button further comprises a snap block (61), when the snap block (61) is inserted into the corresponding recess (1a), the corresponding knife holder (3) and the blade (5) are locked in position.
摘要:
A method of fabricating a medical implant component. The method may comprise producing a substrate from a first material in which the substrate has a bearing portion, and causing particles of a second material to be formed onto at least the bearing portion of the substrate. The second material may be formed from a biocompatible material and a carbide source, in which the carbide source is 6.17% or more of the second material by weight. The particles of the second material may be formed onto at least the bearing portion of the substrate by a predetermined spraying technique, a CVD process, a PVD process, or a carburization process. The biocompatible material may be cobalt chrome and the carbide source may be graphite.
摘要:
A method of fabricating a medical implant component. The method may comprise producing a substrate from a first material in which the substrate has a bearing portion, and spraying particles of a second material by use of a thermal type spraying process onto at least the bearing portion of the substrate. The second material may be formed from a biocompatible material and a carbide source, in which the carbide source is 6.17% or more of the second material by weight. The biocompatible material may be cobalt chrome and the carbide source may be graphite. The thermal type spraying process may be a plasma spraying process or a high velocity oxygen fuel spraying process.
摘要:
A method of fabricating a medical implant component. The method may include the steps of producing a substrate from a first material wherein the substrate has a bearing portion, spraying particles of a second material onto the bearing portion in accordance with a predetermined spraying technique to provide a coating thereon, and subjecting the coated bearing portion to a hot isostatic pressing process, a vacuum sintering process, or a controlled atmospheric sintering process. The first material may be the same as or different from the second material. The predetermined spraying technique may be a thermal type spraying process such as a plasma spraying process or a high velocity oxygen fuel spraying process.
摘要:
Method of providing a desired material on at least a portion of a surface of a substrate of a component, such as a medical implant component. The method may comprise the steps of arranging the component in a holding fixture which is capable of holding the component at atmospheric or substantially atmospheric pressure, and spraying particles of the desired material at a predetermined high velocity toward the at least one portion of the surface of the substrate so as to enable a layer of the material to be accumulated thereon. The spraying may be performed at atmospheric or substantially atmospheric pressure. The desired material may be a reactive type material, such as titanium or an alloy thereof. The method may enable a high density coating or layer of the material to be provided without the use of a post spray thermal consolidation process.
摘要:
An implantable medical device includes a porous metal foam or foam-like structure having pores defined by metal struts or webs wherein the porous structure has directionally controlled pore characteristics. The pore characteristics controlled include one or more of the metal structure porosity, pore size, pore shape, pore size distribution and strut thickness. The pore characteristics may vary in one or more directions throughout the structure. Preferably the pore characteristics are controlled to match the porous metal structure to various mechanical and biological requirements of different regions of the structure in order to optimize aspects of the implants performance and may vary not only over the surface of the porous structure but through the depth of the porous structure. The thickness of the porous metal structure may also be modified to establish a thickness profile that optimizes mechanical and biological requirements of the implants performance. Acetabular cup embodiments of the invention are described. Various methods of manufacturing implants having directionally controlled pore characteristics are described.
摘要:
A prosthetic medical device exhibiting improved wear resistance is fabricated by sealing at least one polyolefinic material in an airtight container and providing an inert atmosphere within the airtight container. The polyolefinic material is exposed to an irradiation source to yield a cross-linked irradiated polyolefinic material. At least one non-irradiated polyolefinic material is blended with the irradiated polyolefinic material, and the prosthetic medical device is formed from the blended material. Selectively cross-linked polymeric compositions may be created by blending a specific amount of cross-linked resins with a specific amount of uncross-linked resins then cured into a polymeric matrix whereby the desired degree or percentage of overall cross-linking is obtained. The polymeric material may then be formed directly into a finished article by injection molding the polymeric material.
摘要:
A method of producing an improved polyethylene, especially an ultra-high molecular weight polyethylene utilizes a sequential irradiation and annealing process to form a highly cross-linked polyethylene material. The use of sequential irradiation followed by sequential annealing after each irradiation allows each dose of irradiation in the series of doses to be relatively low while achieving a total dose which is sufficiently high to cross-link the material. The process may either be applied to a preformed material such as a rod or bar or sheet made from polyethylene resin or may be applied to a finished polyethylene part. If applied to a finished polyethylene part, the irradiation and annealing must be accomplished with the polyethylene material not in contact with oxygen at a concentration greater than 1% oxygen volume by volume. When applied to a preform, such as a rod, the annealing of the bulk polymer part of the rod from which the finished part is made must take place on the rod before the implant is machined therefrom and exposed to oxygen.