摘要:
Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions are provided. In one embodiment, a dopant-comprising composition comprises a conductivity-determining type impurity dopant, a silicate carrier, a solvent, and a moisture adsorption-minimizing component. In another embodiment, a dopant-comprising composition comprises a conductivity-determining type impurity dopant, a silicate carrier, a solvent, and a high boiling point material selected from the group consisting of glycol ethers, alcohols, and combinations thereof. The high boiling point material has a boiling point of at least about 150° C.
摘要:
Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions are provided. In one embodiment, a dopant-comprising composition comprises a conductivity-determining type impurity dopant, a silicate carrier, a solvent, and a moisture adsorption-minimizing component. In another embodiment, a dopant-comprising composition comprises a conductivity-determining type impurity dopant, a silicate carrier, a solvent, and a high boiling point material selected from the group consisting of glycol ethers, alcohols, and combinations thereof. The high boiling point material has a boiling point of at least about 150° C.
摘要:
Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes are provided. In an exemplary embodiment, a method for forming doped regions in a semiconductor substrate is provided. The method comprises providing an ink comprising a conductivity-determining type dopant, applying the ink to the semiconductor substrate using a non-contact printing process, and subjecting the semiconductor substrate to a thermal treatment such that the conductivity-determining type dopant diffuses into the semiconductor substrate.
摘要:
Dopant ink compositions for forming doped regions in semiconductor substrates and methods for fabricating dopant ink compositions are provided. In an exemplary embodiment, a dopant ink composition comprises a dopant compound including at least one alkyl group bonded to a Group 13 element. Further, the dopant ink composition includes a silicon-containing compound.
摘要:
Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks are provided. A boron-comprising ink comprises boron from or of a boron-comprising material and a spread-minimizing additive that results in a spreading factor of the boron-comprising ink in a range of from about 1.5 to about 6. The boron-comprising ink has a viscosity in a range of from about 1.5 to about 50 centipoise and, when deposited on a semiconductor substrate, provides a post-anneal sheet resistance in a range of from about 10 to about 100 ohms/square, a post-anneal doping depth in a range of from about 0.1 to about 1 μm, and a boron concentration in a range of from about 1×1019 to 1×1020 atoms/cm3.
摘要:
Dopant ink compositions for forming doped regions in semiconductor substrates and methods for fabricating dopant ink compositions are provided. In an exemplary embodiment, a dopant ink composition comprises a dopant compound including at least one alkyl group bonded to a Group 13 element or a Group 15 element. Further, the dopant ink composition includes a silicon-containing compound.
摘要:
Dopant ink compositions for forming doped regions in semiconductor substrates and methods for fabricating dopant ink compositions are provided. In an exemplary embodiment, a dopant ink composition comprises a dopant compound including at least one alkyl group bonded to a Group 13 element or a Group 15 element. Further, the dopant ink composition includes a silicon-containing compound.
摘要:
Methods for forming doped regions in a semiconductor material that minimize or eliminate vapor diffusion of a dopant element and/or dopant from a deposited dopant and/or into a semiconductor material and methods for fabricating semiconductor devices that minimize or eliminate vapor diffusion of a dopant element and/or dopant from a deposited dopant and/or into a semiconductor material are provided. In one exemplary embodiment, a method for forming doped regions in a semiconductor material comprises depositing a conductivity-determining type dopant comprising a dopant element overlying a first portion of the semiconductor material. A diffusion barrier material is applied such that it overlies a second portion of the semiconductor material. The dopant element of the conductivity-determining type dopant is diffused into the first portion of the semiconductor material.
摘要:
Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks are provided. A boron-comprising ink comprises boron from or of a boron-comprising material and a spread-minimizing additive that results in a spreading factor of the boron-comprising ink in a range of from about 1.5 to about 6. The boron-comprising ink has a viscosity in a range of from about 1.5 to about 50 centipoise and, when deposited on a semiconductor substrate, provides a post-anneal sheet resistance in a range of from about 10 to about 100 ohms/square, a post-anneal doping depth in a range of from about 0.1 to about 1 μm, and a boron concentration in a range of from about 1×1019 to 1×1020 atoms/cm3.
摘要:
Methods for simultaneously forming doped regions of opposite conductivity using non-contact printing processes are provided. In one exemplary embodiment, a method comprises the steps of depositing a first liquid dopant comprising first conductivity-determining type dopant elements overlying a first region of a semiconductor material and depositing a second liquid dopant comprising second conductivity-determining type dopant elements overlying a second region of the semiconductor material. The first conductivity-determining type dopant elements and the second conductivity-determining type dopant elements are of opposite conductivity. At least a portion of the first conductivity-determining type dopant elements and at least a portion of the second conductivity-determining type dopant elements are simultaneously diffused into the first region and into the second region, respectively.