摘要:
A light-emitting device (1) is provided having a current blocking layer (9) of buried structure, a portion of the current blocking layer (9) having an oxygen concentration higher than that of a light-emitting layer, the current blocking layer being of a thickness of not less than 5 nm and not more than 100 nm. It includes an etching stop layer (24) below the current blocking layer (9), the etching stop layer being good in oxidation resistance. The light-emitting device (1) and its manufacturing method are provided such that the device has its current confinement effect improved and its output increased at lower forward voltage.
摘要:
Provided is a surface light emitting element having a high productivity, a high light emission output and good response characteristics, as well as capable of suppressing an increase of a forward voltage necessary for light emission. A surface light emitting element according to the present invention is a vertical cavity surface light emitting element including: an active layer 5 in which a quantum well layer 51 and a barrier layer 52 are alternately laminated; and reflective layers disposed both above and below the active layer 5, wherein assuming that a center-to-center distance of a plurality of the quantum well layers is L, a light emission wavelength of the surface light emitting element is λ, and an average refractive index of an optical length of a resonator, being a distance between the reflective layers is n, a condition of λ/(15×n)≦L≦λ/(10×n) is satisfied.
摘要:
A novel vertical resonator type light emitting diode of which has a simplified structure of the reflector layer of its light emitting side an which is resistant to declination of its emission output power towards a high temperature range, has an active layer 5, and a first reflector layer 3 at its light reflecting side and a second reflector layer 9 at its light emitting side which are formed to sandwich the active later 5 between them, wherein each of the first reflector layer 3 and the second reflector layer 9 is structured to comprise a plurality of pairs of two alternate semiconductor layers formed which are different from each other in refractive index, and the second reflector layer 9 has a number of such pairs which is not less than 1/10 and not more than ⅓ of that which said first reflector layer 3 has. The emission output power can be enhanced when the first reflector layer has a number of such pairs which is not less than 11 and not more than 41.
摘要:
A novel vertical resonator type light emitting diode of which has a simplified structure of the reflector layer of its light emitting side an which is resistant to declination of its emission output power towards a high temperature range, has an active layer 5, and a first reflector layer 3 at its light reflecting side and a second reflector layer 9 at its light emitting side which are formed to sandwich the active later 5 between them, wherein each of the first reflector layer 3 and the second reflector layer 9 is structured to comprise a plurality of pairs of two alternate semiconductor layers formed which are different from each other in refractive index, and the second reflector layer 9 has a number of such pairs which is not less than 1/10 and not more than ⅓ of that which said first reflector layer 3 has. The emission output power can be enhanced when the first reflector layer has a number of such pairs which is not less than 11 and not more than 41.
摘要:
A light-emitting device (1) is provided having a current blocking layer (9) of buried structure, a portion of the current blocking layer (9) having an oxygen concentration higher than that of a light-emitting layer, the current blocking layer being of a thickness of not less than 5 nm and not more than 100 nm. It includes an etching stop layer (24) below the current blocking layer (9), the etching stop layer being good in oxidation resistance. The light-emitting device (1) and its manufacturing method are provided such that the device has its current confinement effect improved and its output increased at lower forward voltage.
摘要:
Provided is a surface light emitting element having a high productivity, a high light emission output and good response characteristics, as well as capable of suppressing an increase of a forward voltage necessary for light emission. A surface light emitting element according to the present invention is a vertical cavity surface light emitting element including: an active layer 5 in which a quantum well layer 51 and a barrier layer 52 are alternately laminated; and reflective layers disposed both above and below the active layer 5, wherein assuming that a center-to-center distance of a plurality of the quantum well layers is L, a light emission wavelength of the surface light emitting element is λ, and an average refractive index of an optical length of a resonator, being a distance between the reflective layers is n, a condition of λ/(15×n)≦L≦λ/(10×n) is satisfied.
摘要翻译:提供了具有高生产率,高发光输出和良好响应特性的表面发光元件,并且能够抑制发光所需的正向电压的增加。 根据本发明的表面发光元件是垂直空腔表面发光元件,其包括:交替层叠量子阱层51和阻挡层52的有源层5; 以及设置在有源层5的上方和下方的反射层,其中假设多个量子阱层的中心到中心距离为L,表面发光元件的发光波长为λ,平均值 作为反射层之间的距离的谐振器的光学长度的折射率为n,满足λ/(15×n)<= L <=λ/(10×n)的条件。
摘要:
An epitaxial substrate for electronic devices, in which current flows in a lateral direction and of which warpage configuration is properly controlled, and a method of producing the same. The epitaxial substrate for electronic devices is produced by forming a bonded substrate by bonding a low-resistance Si single crystal substrate and a high-resistance Si single crystal substrate together; forming a buffer as an insulating layer on a surface of the bonded substrate on the high-resistance Si single crystal substrate side; and producing an epitaxial substrate by epitaxially growing a plurality of III-nitride layers on the buffer to form a main laminate. The resistivity of the low-resistance Si single crystal substrate is 100 Ω·cm or less, and the resistivity of the high-resistance Si single crystal substrate is 1000 Ω·cm or more.
摘要:
A blasting cartridge includes a generally cylindrical blasting container, a blasting substance filled in the blasting container, a pair of leadwires contained in the blasting container, and a single thin metal wire connected to tip portions of the pair of leadwires. The leadwires and the thin metal wire are positioned within the blasting substance within the blasting container. The blasting substance is nitromethane, and the thin metal wire is formed of tungsten. With an electric discharge impact blasting apparatus, since the thin metal wire has a higher heating value than a copper wire because of its higher resistance and vaporizes at higher temperatures, it is possible to obtain a greater blasting force at lower voltages than with a blasting apparatus using a copper wire.
摘要:
An epitaxial substrate for electronic devices is provided, which can improve vertical breakdown voltage and provides a method of producing the same.The epitaxial substrate includes a conductive SiC single crystal substrate, a buffer as an insulating layer on the SiC single crystal substrate, and a main laminate formed by epitaxially growing a plurality of Group III nitride layers on the buffer. Further, the buffer includes at least an initial growth layer in contact with the SiC single crystal substrate and a superlattice laminate having a superlattice multi-layer structure on the initial growth layer. The initial growth layer is made of a Ba1Alb1Gac1Ind1N material. Furthermore, the superlattice laminate is configured by alternately stacking a first layer made of a Ba2Alb2Gac2Ind2N material and a second layer made of a Ba3Alb3Gac3Ind3N material having a different band gap from the first layer.
摘要:
An epitaxial substrate for electronic devices is provided, which can improve vertical breakdown voltage and provides a method of producing the same. The epitaxial substrate includes a conductive SiC single crystal substrate, a buffer as an insulating layer on the SiC single crystal substrate, and a main laminate formed by epitaxially growing a plurality of Group III nitride layers on the buffer. Further, the buffer includes at least an initial growth layer in contact with the SiC single crystal substrate and a superlattice laminate having a superlattice multi-layer structure on the initial growth layer. The initial growth layer is made of a Ba1Alb1Gac1Ind1N material. Furthermore, the superlattice laminate is configured by alternately stacking a first layer made of a Ba2Alb2Gac2Ind2N material and a second layer made of a Ba3Alb3Gac3Ind3N material having a different band gap from the first layer.