Abstract:
The invention concerns compositions comprising (a) from about 20 wt % to about 80 wt % of a polymer component; (b) from about 10 wt % to about 70 wt % of a flame retardant component; and (c) from about 0.01 wt % to about 5 wt % of an acid component; wherein the combined weight percent value of all components does not exceed 100 wt %; wherein all weight percent values are based on the total weight of the composition; and wherein the composition has: (i) a thermal conductivity of at least about 1.5 W/mK for through plane thermal conductivity; (ii) flame retardancy of at least VI at 0.8 mm using the UL94 test standard; and (iii) melt volume flow rate of at least 10 g/cm3 using ASTM D 1238.
Abstract:
Disclosed herein is a composition comprising 20 to 80 wt % of an organic polymer; 0.1 to 30 wt % of flame retardant that comprises a phosphorus containing flame retardant and/or a nitrogen containing flame retardant; and 0.1 to 50 wt % of calcium sulfate. Disclosed herein is a method comprising blending 20 to 80 wt % of an organic polymer; 0.1 to 30 wt % of flame retardant package that comprises a phosphorus flame retardant and/or a nitrogen flame retardant; 0.1 to 50 wt % of calcium sulfate; and molding the composition.
Abstract:
Disclosed herein are blended thermoplastic compositions comprising at least one polycarbonate polymer, at least one polyester polymer, and at least one reinforcing filler. The thermal blended polycarbonate compositions can optionally further comprise at least one polycarbonate-polysiloxane copolymer, at least one impact modifier polymer, and/or at least one flame retardant. The resulting compositions can be used in the manufacture of articles requiring materials with high modulus and high flowability, while retaining good impact strength. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
Abstract:
The present disclosure relates to a wear resistant polymer composition. The disclosed composition comprises a polymer matrix and a tetrafluoroethylene polymer. Also disclosed is a method for making the disclosed polymer composition and an article of manufacture comprising the disclosed polymer composition.
Abstract:
Disclosed herein is a flame retardant composition comprising 20 to 80 weight percent of a polycarbonate; 1 to 20 weight percent of a halogenated phenoxyphosphazene flame retardant, where all weight percents are based on a total weight of the flame retardant composition. Disclosed herein too is a method comprising blending a 20 to 80 weight percent of a polycarbonate; and 1 to 20 weight percent of a halogenated phenoxyphosphazene flame retardant to produce a flame retardant composition, where all weight percents are based on a total weight of the flame retardant composition.
Abstract:
In various aspects, the disclosure relates to reinforced thermoplastic compositions exhibiting improved physical properties as well as thin wall flame resistance. The reinforced thermoplastic compositions comprise polycarbonate polymer, a filler, and a polyolefin elastomer.
Abstract:
The present disclosure relates to a wear resistant polymer composition. The disclosed composition comprises a polymer matrix and a tetrafluoroethylene polymer. Also disclosed is a method for making the disclosed polymer composition and an article of manufacture comprising the disclosed polymer composition.
Abstract:
Disclosed herein is a flame retardant composition comprising a polycarbonate; 5 to 10 weight percent of a polysiloxane-polycarbonate copolymer; where the polysiloxane-polycarbonate copolymer comprises an amount of greater than 10 weigh percent of the polysiloxane and where the molecular weight of the polysiloxane-polycarbonate copolymer is greater than or equal to 25,000 grams per mole; 5 to 20 weight percent of a branched polycarbonate; 5 to 60 weight percent of a reinforcing filler; and 1 to 15 weight percent of a flame retarding compound
Abstract:
In various aspects, the disclosure relates to thermally conductive thermoplastic compositions comprising a polymer matrix, an impact modifier composition having a chemically reactive impact modifier, and, optionally, a chemically non-reactive impact modifier, and a thermally conductive filler. The disclosed thermally conductive thermoplastic compositions exhibit good thermal conductivity and improved impact and ductile properties.
Abstract:
In an embodiment, a composition comprises, based on the total weight of the composition, 55 to 85 wt % of a polycarbonate; 10 to 25 wt % of an organopolysiloxane-polycarbonate block copolymer; 5 to 15 wt % of a phosphine oxide; and 0 to 3 wt % of an impact modifier. In another embodiment, a method of making a composition comprises extruding a mixture to form a composition comprising, based on the total weight of the composition, 55 to 85 wt % of a polycarbonate; 10 to 25 wt % of an organopolysiloxane-polycarbonate block copolymer; 5 to 15 wt % of a phosphine oxide; and 0 to 3 wt % of an impact modifier comprises extruding the polycarbonate, the organopolysiloxane-polycarbonate block copolymer, and the phosphine oxide to form the composition.