Abstract:
A multilayer ceramic electronic component includes a ceramic body including dielectric layers and first and second internal electrodes alternately stacked with each of the dielectric layers interposed therebetween. First and second external electrodes are disposed on outer surfaces of the ceramic body, connected to the first and second internal electrodes respectively, and disposed to cover at least five of eight corners of the ceramic body. The first and second external electrodes include, respectively, first and second base electrode layers at least partially in contact with the outer surfaces of the ceramic body and first and second plating layers disposed to cover the first and second base electrode layers, respectively. The first and second plating or base electrode layers have one or more to three or less holes positioned adjacent to one or more to three or less of the eight corners of the ceramic body.
Abstract:
A multilayer ceramic electronic component includes a ceramic body including dielectric layers and internal electrodes and having first and second surfaces opposing each other in a first direction, third and fourth surfaces opposing each other in a second direction, and fifth and sixth surfaces opposing each other in a third direction, base electrode layers disposed on the ceramic body and including main portions connected to the internal electrodes and extension portions extending from the main portions, and resin electrode layers disposed on the base electrode layers while leaving end portions of the extension portions exposed. A width of the extension portion is narrower than a width of the outer surface of the ceramic body on which the extension portion is disposed, measured in a direction parallel to a width direction of the extension portion.
Abstract:
A capacitor component includes a body including a dielectric layer, a first electrode and a second internal electrode, laminated in a first direction, opposing each other, and a first cover portion and a second cover portion, disposed on outermost surfaces of the first and second internal electrodes, each having a thickness of 25 μm or less, a first electrode layer and a second electrode layer, respectively disposed on both external surfaces of the body in a second direction perpendicular to the first direction and respectively, and plating layers, respectively disposed on the first and second electrode layers. A metal oxide is disposed on a boundary between the first electrode layer and the plating layer and a boundary between the second electrode layer and the plating layer.
Abstract:
A capacitor component includes a body including a dielectric layer, a first electrode and a second internal electrode, laminated in a first direction, opposing each other, and a first cover portion and a second cover portion, disposed on outermost surfaces of the first and second internal electrodes, each having a thickness of 25 μm or less, a first electrode layer and a second electrode layer, respectively disposed on both external surfaces of the body in a second direction perpendicular to the first direction and respectively, and plating layers, respectively disposed on the first and second electrode layers. A metal oxide is disposed on a boundary between the first electrode layer and the plating layer and a boundary between the second electrode layer and the plating layer.
Abstract:
A capacitor includes a body having a first surface, a second surface, and a third surface and a fourth surface connecting the first surface to the second surface, and including a first internal electrode and a second internal electrode respectively having a first lead portion and a second lead portion exposed to the second surface, a first external electrode and a second external electrode formed on the second surface of the body, and electrically connected to the first internal electrode and the second internal electrode, respectively, and dummy electrodes formed on the third surface and the fourth surface of the body and extending from edges at which the second surface meets the third surface and the fourth surface.
Abstract:
A multilayer ceramic component is provided. The multilayer ceramic component includes a ceramic body including a plurality of ceramic laminates, each including a plurality of dielectric layers and a plurality of internal electrodes and having first and second surfaces opposing each other in a first direction, third and fourth surfaces opposing each other in a second direction, and fifth and sixth surfaces opposing each other in a third direction, and a plurality of external electrodes including base electrode layers disposed on outer surfaces of the ceramic body and respectively connected to the internal electrodes of the ceramic laminates, and resin electrode layers disposed on the base electrode layers to expose at least portions of end portions of the base electrode layers, respectively.
Abstract:
A multilayer ceramic capacitor includes a body including a dielectric layer and an internal electrode, and an external electrode disposed on the body. The external electrode includes an electrode layer connected to the internal electrode, a first plating portion disposed on the electrode layer and having a thickness ranging from 0.3 μm to 1 μm, and a second plating portion disposed on the first plating portion.
Abstract:
A multilayer ceramic electronic component includes: a ceramic body including a dielectric layer and a first internal electrode and a second internal electrode disposed in a stacking direction to face each other with the dielectric layer interposed therebetween; and a first external electrode electrically connected to the first internal electrode and a second external electrode electrically connected to the second internal electrode. Where a length of the first electrode layer in a length direction of the ceramic body is denoted by A and a length of the second electrode layer in a length direction of the ceramic body is denoted by B, B is shorter than A.
Abstract:
A multilayer ceramic electronic part includes a body portion including an internal electrode and a dielectric layer, a first electrode layer disposed on at least one surface of the body portion and electrically connected to the internal electrode, and a conductive resin layer disposed on the first electrode layer and including a first conductivity-type metal particle, a second conductivity-type metal, and a base resin. The second conductivity-type metal has a melting point lower than a curing temperature of the base resin.
Abstract:
There is provided a multi-layer ceramic electronic component including: a ceramic sintered body in which a plurality of dielectric layers are laminated; first and second internal electrodes formed in the ceramic sintered body; first and second external electrodes formed on both ends of the ceramic sintered body while covering a circumference thereof, and electrically connected to the first and second internal electrodes; and a sealing part including a glass component and formed in a gap between an outer surface of the ceramic sintered body and ends of the first and second external electrodes.