Abstract:
A dielectric ceramic composition and a multilayer ceramic electronic component are provided, the dielectric ceramic composition includes a barium titanate base material main component and a subcomponent, a microstructure after sintering includes a first crystal grain including 3 or less domain boundaries and a second crystal grain including 4 or more domain boundaries, and an area ratio of the second crystal grain to the total crystal grains is 20% or less.
Abstract:
A ceramic electronic component includes a body including a dielectric layer and an internal electrode disposed alternately with the dielectric layer; and an external electrode disposed on the body, wherein the dielectric layer includes a first region extending from an interfacial surface with the internal electrode to 50 nm of the dielectric layer in an inward direction and a second region excluding the first region, and wherein, in the first region, an average content of In based on overall elements excluding oxygen is 0.5 at % or more and 2.0 at % or less, and an average content of Sn based on overall elements excluding oxygen is 0.5 at % or more and 1.75 at % or less.
Abstract:
There are provided a method, an apparatus and a sample for evaluating bonding strength, the method including setting a micro-region including a bonded interface in an evaculated sample, forming a first groove in a circumferential portion of the micro-region to have a predetermined depth, processing a side of the micro-region to form a second groove connected to the bonded interface, and applying pressure on the micro-region to measure a critical point at which a delamination of the micro-region is generated.
Abstract:
There are provided an inspection device for substrate deformation at high temperatures and an inspection method for substrate deformation at high temperatures, the inspection device for substrate deformation at high temperatures, including a crucible including an internal space, an inspection hole disposed in an upper portion thereof so as to inspect the internal space, and a heating unit heating the internal space, an indenter tip disposed in the crucible such that a substrate fixed to the internal space is warped, and an inspection unit disposed above the crucible so as to inspect a cross-section of the substrate.
Abstract:
There is provided an In nanowire including a substrate, an indium thin film formed on the substrate, an insulating film formed on the indium thin film and having at least one through hole through formation of a pattern, and an In nanowire vertically protruded from the indium thin film through the at least one through hole.
Abstract:
A multilayer electronic component includes a body including a dielectric layer and an internal electrode; and an external electrode disposed on the body, wherein the dielectric layer includes a rare earth element, a secondary phase of the rare earth element and a dielectric grain, wherein, when an average thickness of the dielectric layer is defined as td and a maximum size of the dielectric layer of a secondary phase of the rare earth element in the thickness direction is defined as D, the dielectric layer includes two or more secondary phases of a rare earth element satisfying D/td≤0.2.
Abstract:
Embodiments of the invention provide a touch sensor including a base substrate, and an electrode pattern formed on the base substrate. The electrode pattern is formed by continuously connecting one or more unit patterns, and each unit pattern has closed figures formed to be irregularly arranged therein.