Abstract:
Provided are a deposition process monitoring system capable of detecting an internal state of a chamber in a deposition process, and a method of controlling the deposition process and a method of fabricating a semiconductor device using the system. The deposition process monitoring system includes a facility cover configured to define a space for a deposition process, a chamber located in the facility cover, covered with a translucent cover dome, and having a support on which a deposition target is placed, a plurality of lamps disposed in the facility cover, the lamps respectively disposed above and below the chamber, the lamps configured to supply radiant heat energy into the chamber during the deposition process, and a laser sensor disposed outside the chamber, the laser sensor configured to irradiate the cover dome with a laser beam and detect an intensity of the laser beam transmitted through the cover dome, wherein a state of by-products with which the cover dome is coated is determined based on the detected intensity of the laser beam.
Abstract:
Provided are a deposition process monitoring system capable of detecting an internal state of a chamber in a deposition process, and a method of controlling the deposition process and a method of fabricating a semiconductor device using the system. The deposition process monitoring system includes a facility cover configured to define a space for a deposition process, a chamber located in the facility cover, covered with a translucent cover dome, and having a support on which a deposition target is placed, a plurality of lamps disposed in the facility cover, the lamps respectively disposed above and below the chamber, the lamps configured to supply radiant heat energy into the chamber during the deposition process, and a laser sensor disposed outside the chamber, the laser sensor configured to irradiate the cover dome with a laser beam and detect an intensity of the laser beam transmitted through the cover dome, wherein a state of by-products with which the cover dome is coated is determined based on the detected intensity of the laser beam.
Abstract:
A method of manufacturing an integrated circuit (IC) device includes exposing a partial region of a photoresist film formed on a main surface of a substrate to generate acid, and diffusing the acid in the partial region of the photoresist film. Diffusing the acid may include applying an electric field, in a direction perpendicular to a direction in which the main surface of the substrate extends, to the photoresist film using an electrode facing the substrate through an electric-field transmission layer filling between the photoresist film and the electrode. The electric-field transmission layer may include an ion-containing layer or a conductive polymer layer.
Abstract:
A method of forming through silicon vias (TSVs) uses a low-k dielectric material as a via insulating layer to thereby improve step coverage and minimize resistive capacitive (RC) delay. To this end, the method includes forming a primary via hole in a semiconductor substrate, depositing low-k dielectric material in the primary via hole, forming a secondary via hole by etching the low-k dielectric in the primary via hole, in such a manner that a via insulating layer and an inter metal dielectric layer of the low-k dielectric layer are simultaneously formed. The via insulating layer is formed of the low-k dielectric material on sidewalls and a bottom surface of the substrate which delimit the primary via hole and the inter metal dielectric layer is formed on an upper surface of the substrate. Then a metal layer is formed on the substrate including in the secondary via hole, and the metal layer is selectively removed from an upper surface of the semiconductor substrate.