Abstract:
A semiconductor memory device includes pillars extending upright on a substrate in a direction perpendicular to the substrate, a stack disposed on the substrate and constituted by a first interlayer insulating layer, a first conductive layer, a second interlayer insulating layer, and a second conductive layer, a variable resistance layer interposed between the pillars and the first conductive layer, and an insulating layer interposed between the first pillars and the second conductive layer.
Abstract:
A method for operating a memory device includes sensing a change in temperature of the memory device, adjusting a level of a reference current for a read operation, and reading data from memory cells of the memory device based on the adjusted level of the reference current. The level of the reference current is adjusted from a reference value to a first value when the temperature of the memory device increases and is adjusted from the reference value to a second value when the temperature of the memory device decreases. A difference between the reference value and the first value is different from a difference the reference value and the second value.
Abstract:
A method for operating a memory device includes sensing a temperature of the resistive memory device, setting a level of a set voltage or current for writing to a memory cell based on the temperature, setting a level of a reset voltage for reset writing to the memory cell based on the temperature, and performing a write operation on the memory cell based on the level of the set voltage or current and the level of the reset voltage. The memory device may be a resistive memory device.