Abstract:
A semiconductor light-emitting device, and a method of manufacturing the same. The semiconductor light-emitting device includes a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked on a substrate, a first contact that passes through the substrate to be electrically connected to the first electrode layer, and a second contact that passes through the substrate, the first electrode layer, and the insulating layer to communicate with the second electrode layer. The first electrode layer is electrically connected to the first semiconductor layer by filling a contact hole that passes through the second electrode layer, the second semiconductor layer, and the active layer, and the insulating layer surrounds an inner circumferential surface of the contact hole to insulate the first electrode layer from the second electrode layer.
Abstract:
A light-emitting device includes: a substrate; a light-emitting structure including first and second nitride-based semiconductor layers on the substrate and an active layer between the first and second nitride-based semiconductor layers; an insulating layer on a top surface of the light-emitting structure; a protrusion on the insulating layer, a top surface of the protrusion being larger than a bottom surface thereof, the protrusion having a trapezoidal cross-section; a transparent conductive layer covering a top surface of the light-emitting structure, a top surface of the insulating layer, and the top surface of the protrusion and having a constant thickness along the top surface of the light-emitting structure, the top surface of the insulating layer, and the top surface of the protrusion; and an electrode covering at least one of inclined surfaces of the protrusion on the transparent conductive layer.
Abstract:
A semiconductor light-emitting device, and a method of manufacturing the same. The semiconductor light-emitting device includes a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked on a substrate, a first contact that passes through the substrate to be electrically connected to the first electrode layer, and a second contact that passes through the substrate, the first electrode layer, and the insulating layer to communicate with the second electrode layer. The first electrode layer is electrically connected to the first semiconductor layer by filling a contact hole that passes through the second electrode layer, the second semiconductor layer, and the active layer, and the insulating layer surrounds an inner circumferential surface of the contact hole to insulate the first electrode layer from the second electrode layer.
Abstract:
A semiconductor light-emitting device includes a semiconductor region having a light-emitting structure, an electrode layer formed on the semiconductor region, and a reflective protection structure extending exposing the upper surface of the electrode layer and covering the semiconductor region adjacent to the electrode layer.
Abstract:
An LED includes a compound semiconductor structure having first and second compound layers and an active layer, first and second electrode layers atop the second compound semiconductor layer and connected to respective compound layers. An insulating layer is coated in regions other than where the first and second electrode layers are located. A conducting adhesive layer is formed atop the non-conductive substrate, connecting the same to the first electrode layer and insulating layer. Formed on one side surface of the non-conductive substrate and adhesive layer is a first electrode connection layer connected to the conducting adhesive layer. A second electrode connection layer formed on another side surface is connected to the second electrode layer. By forming connection layers on respective side surfaces of the light-emitting device, manufacturing costs can be reduced.