Abstract:
A transducer module includes a curved surface frame which is formed from a flexible material in a curved shape and includes a front surface and a rear surface; a transducer which is disposed on the front surface; and a support frame which is mounted on the rear surface and supports the curved surface frame.
Abstract:
A portable ultrasonic probe includes a main body including a transducer to generate an ultrasonic wave and a folder portion including a display portion and pivotally coupled to an end portion of the main body, the main body includes a first heat radiation module configured to absorb and emit heat generated by the transducer, and the folder portion includes a second heat radiation module thermally coupled to the first heat radiation module when the folder portion is in a first position and configured to emit heat transmitted from the first heat radiation module.
Abstract:
An ultrasonic probe, from which heat generated in an integrated circuit which is bonded to a cMUT is released, is provided. The ultrasonic probe includes a transducer which is configured to generate ultrasound radiation, an integrated circuit which is installed on the rear surface of the transducer, a printed circuit board which is installed on the rear surface of the integrated circuit and has an opening via which the rear surface of the integrated circuit is at least partially exposed, a heat spreader which has a protrusion inserted into the opening of the printed circuit board and is configured to absorb heat generated in the integrated circuit, and a heat dissipation module which is configured to release heat absorbed by the heat spreader to the outside.
Abstract:
A jig includes a wafer including an accommodation groove configured to accommodate a capacitive micromachined ultrasonic transducer (cMUT) when flip chip bonding is performed, and a separation groove formed in a bottom surface of the accommodation groove, the separation groove having a bottom surface that is spaced apart from thin films of the cMUT that face the bottom surface of the separation groove when the cMUT is seated on portions of the bottom surface of the accommodation groove.
Abstract:
Disclosed herein is an ultrasonic probe capable of emitting heat generated by a transducer outside the ultrasonic probe using a heat radiation plate. The ultrasonic probe includes a transducer configured to generate an ultrasonic wave, a heat spreader provided on a surface of the transducer, the heat spreader being configured to absorb heat generated by the transducer, at least one heat radiation plate which contacts at least one side of the heat spreader, and at least one board installed on the at least one heat radiation plate so as to transfer heat generated by the at least one board to the at least one heat radiation plate.
Abstract:
Disclosed herein is a beamforming apparatus for beamforming signals which are transmitted or received by a probe which includes a plurality of transducer blocks, each of which includes a plurality of transducers. The apparatus includes a controller configured to control components to delay signals to be transmitted by the plurality of transducers included in each transducer block or signals received by the plurality of transducers included in each transducer block, and an analog beamformer which includes a plurality of beamforming units which correspond to the respective transducer blocks. The plurality of beamforming units is configured to perform analog beamforming on signals transmitted or received by the plurality of transducers included in each transducer block based on a control signal which is received from the controller, to reduce a dynamic delay range, thereby reducing a size of a delay line.
Abstract:
Provided is a portable ultrasonic probe including a main body comprising a transducer configured to generate an ultrasonic wave, and a folder part comprising a display and rotatably coupled to an end portion of the main body, wherein the main body further comprises an analog to digital (AD) converter and a beamformer, the AD converter and the beamformer being provided in a chip.
Abstract:
A jig includes a wafer including an accommodation groove configured to accommodate a capacitive micromachined ultrasonic transducer (cMUT) when flip chip bonding is performed, and a separation groove formed in a bottom surface of the accommodation groove, the separation groove having a bottom surface that is spaced apart from thin films of the cMUT that face the bottom surface of the separation groove when the cMUT is seated on portions of the bottom surface of the accommodation groove.
Abstract:
A multi-array type ultrasonic probe apparatus includes n tiles which transmit and receive an ultrasonic beam; and a substrate having n guide portions on which the n tiles are mounted, respectively, to be aligned in a multi-array. The multi-array ultrasonic probe apparatus may align tiles in identical directions and at identical levels to control a direction and a time for transmitting and receiving an ultrasonic beam to be transmitted and received at the tiles, thereby providing a stable ultrasonic beam.