Abstract:
A metal powder for powder metallurgy according to the invention contains Co as a principal component, Cr in a proportion of 25 to 32 mass %, Ni in a proportion of 5 to 15 mass %, Fe in a proportion of 0.5 to 2 mass %, W in a proportion of 4 to 10 mass %, Si in a proportion of 0.3 mass % to 1.5 mass %, and C in a proportion of 0.05 mass % to 0.8 mass %, wherein when one element selected from the group consisting of Ti, V, Y, Zr, Nb, Hf, and Ta is defined as a first element, and one element selected from the group and having a higher group number in the periodic table than that of the first element or having the same group number as that of the first element and a higher period number than that of the first element is defined as a second element, the first element is contained in a proportion of 0.01 to 0.5 mass %, and the second element is contained in a proportion of 0.01 to 0.5 mass %.
Abstract:
A method of manufacturing an electric wiring layer including an electric wiring includes obtaining a pressed powder molded layer by pressurizing a powder including a metal particle with an insulating layer, the metal particle being constituted by a metal particle having conductivity and a surface insulating layer which is located on a surface of the metal particle and which mainly contains a glass material; and irradiating the pressed powder molded layer with energy rays and forming the electric wiring in an irradiation region.
Abstract:
A sintered metal body contains a composition of ferritic stainless steel, nitrogen, and impurities. The sintered metal body has an interstitial nitrogen solid solution layer which has an average thickness of 200 μm or more and in which nitrogen atoms are in a form of a solid solution, and a Vickers hardness at a position of a depth of 200 μm from a surface is 250 or more. In addition, a relative density may be 99.0% or more.
Abstract:
A metal powder for powder metallurgy contains Co as a principal component, Cr in a proportion of 10 to 25 mass %, Ni in a proportion of 5 to 40 mass %, at least one of Mo and W in a proportion of 2 to 20 mass % in total, Si in a proportion of 0.3 to 1.5 mass %, and C in a proportion of 0.05 to 0.8 mass %, wherein one element selected from the group consisting of Ti, V, Y, Zr, Nb, Hf, and Ta is defined as a first element, that is contained in a proportion of 0.01 to 0.5 mass %.
Abstract:
A method for producing an electrical wiring member includes press-molding a composition containing a resin material and metal particles with an insulating layer, each of which is constituted by a metal particle and a surface insulating layer covering the metal particle and containing a glass material as a main material, thereby obtaining a powder-compacted layer and irradiating the powder-compacted layer with an energy beam, thereby causing the irradiated regions to exhibit electrical conductivity.
Abstract:
A sintering metal powder to be used in sintering contains: a composition of ferritic stainless steel; C having a content of 0.05 mass % or more and 1.00 mass % or less; Nb having a content of 0.05 mass % or more and 1.50 mass % or less; and impurities. In addition, C/Nb may be 0.10 or more and 1.80 or less, where C/Nb is a ratio of the content of C to the content of Nb.
Abstract:
A titanium sintered body is composed of a material containing titanium, and has an oxygen content of 2500 ppm by mass or more and 5500 ppm by mass or less and a surface Vickers hardness of 250 or more and 500 or less. It is preferred that an α-phase and a β-phase are contained as crystal structures, and an area ratio occupied by the α-phase in a cross section is 70% or more and 99.8% or less. It is also preferred that in an X-ray diffraction spectrum obtained by X-ray diffractometry, the value of a peak reflection intensity by the plane orientation (110) of the β-phase is 5% or more and 60% or less of the value of a peak reflection intensity by the plane orientation (100) of the α-phase. It is also preferred that particles composed mainly of titanium oxide are included.
Abstract:
A titanium sintered body contains an α-phase and a β-phase as crystal structures, wherein the average grain size of the α-phase in a cross section is 3 μm or more and 30 μm or less, and an area ratio occupied by the α-phase in a cross section is 70% or more and 99.8% or less. In the titanium sintered body, it is preferred that the average aspect ratio of the α-phase in a cross section is 1 or more and 3 or less. It is also preferred that the titanium sintered body contains titanium as a main component, and also contains an α-phase stabilizing element and a β-phase stabilizing element.