Abstract:
To provide a peeling method that achieves low cost and high mass productivity. The peeling method includes the steps of: forming a first layer with a photosensitive material over a formation substrate; forming a first region and a second region having a smaller thickness than the first region in the first layer by photolithography to form a resin layer having the first region and the second region; forming a transistor including an oxide semiconductor in a channel formation region over the first region in the resin layer; forming a conductive layer over the second region in the resin layer; and irradiating the resin layer with laser light to separate the transistor and the formation substrate.
Abstract:
Provided is a flexible device with fewer defects caused by a crack or a flexible device having high productivity. A semiconductor device including: a display portion over a flexible substrate, including a transistor and a display element; a semiconductor layer surrounding the display portion; and an insulating layer over the transistor and the semiconductor layer. When seen in a direction perpendicular to a surface of the flexible substrate, an end portion of the substrate is substantially aligned with an end portion of the semiconductor layer, and an end portion of the insulating layer is positioned over the semiconductor layer.
Abstract:
A high-yield fabricating method of a semiconductor device including a peeling step is provided. A peeling method includes a step of stacking and forming a first material layer and a second material layer over a substrate and a step of separating the first material layer and the second material layer from each other. The second material layer is formed over the substrate with the first material layer therebetween. The first material layer includes a first compound layer in contact with the second material layer and a second compound layer positioned closer to the substrate side than the first compound layer is. The first compound layer has the highest oxygen content among the layers included in the first material layer. The second compound layer has the highest nitrogen content among the layers included in the first material layer. The second material layer includes a resin. In the step of separating, the first material layer and the second material layer are separated from each other by irradiation of an interface between the first material layer and the second material layer or the vicinity of the interface with light.
Abstract:
The yield of a manufacturing process of a semiconductor device is increased. The mass productivity of a semiconductor device is increased. A semiconductor device is manufactured by forming a first material layer over a substrate; forming a second material layer over the first material layer; and separating the first material layer and the second material layer from each other; and heating the first material layer and the second material layer that are stacked before the separation. The first material layer includes a gas containing hydrogen, oxygen, or hydrogen and oxygen (e.g., water) in a metal oxide, for example. The second material layer includes a resin. The first material layer and the second material layer are separated from each other by a break of a hydrogen bond. Specifically water is separated out at the interface or near the interface, and then adhesion is reduced due to the water present.
Abstract:
A flexible device is provided. The hardness of a bonding layer of the flexible device is set to be higher than Shore D of 70, or preferably higher than or equal to Shore D of 80. The coefficient of expansion of a flexible substrate of the flexible device is set to be less than 58 ppm/° C., or preferably less than or equal to 30 ppm/° C.
Abstract:
A high-yield fabricating method of a semiconductor device including a peeling step is provided. A peeling method includes a step of stacking and forming a first material layer and a second material layer over a substrate and a step of separating the first material layer and the second material layer from each other. The second material layer is formed over the substrate with the first material layer therebetween. The first material layer includes a first compound layer in contact with the second material layer and a second compound layer positioned closer to the substrate side than the first compound layer is. The first compound layer has the highest oxygen content among the layers included in the first material layer. The second compound layer has the highest nitrogen content among the layers included in the first material layer. The second material layer includes a resin. In the step of separating, the first material layer and the second material layer are separated from each other by irradiation of an interface between the first material layer and the second material layer or the vicinity of the interface with light.
Abstract:
The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.
Abstract:
Provided is a flexible device with fewer defects caused by a crack or a flexible device having high productivity. A semiconductor device including: a display portion over a flexible substrate, including a transistor and a display element; a semiconductor layer surrounding the display portion; and an insulating layer over the transistor and the semiconductor layer. When seen in a direction perpendicular to a surface of the flexible substrate, an end portion of the substrate is substantially aligned with an end portion of the semiconductor layer, and an end portion of the insulating layer is positioned over the semiconductor layer.
Abstract:
The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.
Abstract:
An object is to eliminate a harmful effect when a film is bonded by wiping an adhering sealant (30a). Characterized is a wiping device (200) including a stage (230) that supports a sheet-like member (220), a wiping means (210) that wipes an adhering object (30a) adhering on a peripheral portion of the sheet-like member (220), a wiping cloth (241) that is attachably and detachably provided for the wiping means (210), and a solvent (261) that adheres to the wiping cloth (241), in which the wiping means (210) is provided with the wiping cloth (241), makes the solvent (261) adhere to the wiping cloth (241), and wipes the adhering object (30a), or a stack manufacturing apparatus (1000) including such a wiping device (200).