Abstract:
A light emitting device of the present invention includes a light-emitting section for generating fluorescence by receiving a laser beam, and a light irradiation unit for irradiating a light irradiated surface of the light emitting section with a laser beam that increases regularly in beam diameter in a direction in which the laser beam travels.
Abstract:
In a light emitting device (10) includes a light source (11) which emits near-ultraviolet laser light and a fluorescent member (12) which includes a fluorescent body (13) that is excited by the light emitted from the light source (11) so as to emit light, the fluorescent member (12) includes a substrate (16) which is formed with a highly heat conductive member and a fluorescent body layer (14) in which particles (13d) of the fluorescent body (13) are deposited on the substrate (16).
Abstract:
A light-emitting device includes a plurality of laser elements, a light-emitting section for emitting light in response to a laser beam, and an emission control section for controlling whether each of the plurality of laser elements emits light or not. At least a part of the plurality of laser elements is positioned in such a manner that irradiation regions of the light-emitting section are positioned at least partially differently.
Abstract:
A headlight system in accordance with the present invention includes: a semiconductor laser element that emits laser light; a light-emitting section that upon receipt of the laser light emitted from the semiconductor laser element, emits illumination light which is both the laser light and fluorescence obtained by wavelength conversion of a portion of the laser light; and a diffusion plate that mixes the laser light and fluorescence which are contained in the illumination light emitted by the light-emitting section.
Abstract:
A light-emitting device includes a light-emitting portion that emits fluorescence in response to excitation light incident on a surface of the light-emitting portion, and a reflector that defines a light-emitting region on the surface of the light-emitting portion, the fluorescence being emitted from the light-emitting region. The excitation light has a top-hat energy intensity distribution on the surface of the light-emitting portion.
Abstract:
An optical apparatus of an aspect of the present invention includes: a plurality of semiconductor laser elements each of which emits laser light; an optical fiber which has a core which guides the laser light; and an imaging section which causes a plurality of beams of laser light to form an image on an incidence end surface of the single core, the incidence end surface having an outer shape which has a first side defining a width of the core and a second side defining a height of the core, a plurality of spots which are formed on the incidence end surface having respective long axes which are aligned with each other, the long axes of the plurality of spots being aligned with the first side or the second side.
Abstract:
A light-projecting device according to the present invention includes a plurality of light source units including (i) a light emitting section that emits light upon receiving a laser beam and (ii) a reflector. Each of the light source units project light to a corresponding one of light-projected spots which is a region to which light is projected in an illuminated region in a partitioning manner, and the illuminated region is formed by combining a plurality of the light-projected spot.
Abstract:
A light projecting device of the present invention includes: a light source unit including (i) a laser element for emitting light, (ii) a light converging lens for converging the light emitted from the laser element, and (iii) a light emitting section for emitting light upon receipt of the light converged by the light converging lens; and a reflector for projecting light emitted from the light source unit. The light source unit is provided so as to be attached to or detached from a fixed part to which the light source unit is to be fixed.
Abstract:
A light-emitting device includes a light-emitting portion that emits fluorescence in response to excitation light incident on a surface of the light-emitting portion, and a reflector that defines a light-emitting region on the surface of the light-emitting portion, the fluorescence being emitted from the light-emitting region. The excitation light has a top-hat energy intensity distribution on the surface of the light-emitting portion.
Abstract:
A light emitting device of the present invention includes a light-emitting section for generating fluorescence by receiving a laser beam, and a light irradiation unit for irradiating a light irradiated surface of the light emitting section with a laser beam that increases regularly in beam diameter in a direction in which the laser beam travels.