Abstract:
A semiconductor system may include a memory controller and a non-volatile memory apparatus. The memory controller may generate a recovery command signal by measuring a power off time of the non-volatile memory apparatus. The non-volatile memory apparatus may perform a drift recovery operation based on the recovery command signal.
Abstract:
A semiconductor memory device includes a program and read unit suitable for programming program data in a memory cell array and for reading read data stored in the memory cell array, and a control unit suitable for generating a control signal for controlling the program and read unit in response to a command input from the outside of the semiconductor memory device, in which the control unit controls the program and read unit to read the read data in a state of storing a first bit data of the program data when a read command is input while programming the program data.
Abstract:
A semiconductor memory device is kept in a busy state by controlling a ready/busy pad when a detection signal is output since an external voltage is less than a reference voltage, prevents generation of an operating voltage by a pump circuit by preventing generation of a pump clock, and resets a microcontroller by preventing generation of micro clock. Accordingly, the semiconductor memory device may be prevented from malfunctioning through a series of operations when the external voltage is less than the reference voltage.
Abstract:
The disclosure relates to a semiconductor memory device and a method of operating the same. The semiconductor memory device includes a memory block including a plurality of memory strings, a pass circuit connected between local word lines of the memory block and global word lines and configured to connect the local word lines to the global word lines in response to a block selection signal, and a voltage providing circuit configured to generate an operation voltage during a program or read operation, apply the operation voltage to the global word lines, and discharge the global word lines when the program operation or the read operation is completed, and the pass circuit is configured to control the local word lines to be in a floating state after the program operation or the read operation is completed and before discharging the global word lines.
Abstract:
A semiconductor memory apparatus includes an access line control circuit. The access line control circuit applies a selected bias voltage to a selected access line coupled with a target memory cell and applies a first unselected bias voltage to an unselected access line adjacent to the selected access line. A second unselected bias voltage is applied to an unselected access line not adjacent to the selected access line.
Abstract:
A resistance variable memory device may include a plurality of memory cells and a control circuit block. The memory cells may be connected between a global word line and a global bit line. The control circuit block may control the memory cells. The control circuit block may include a write pulse control block. The write pulse control block may include a high resistance path circuit and a bypass circuit connected between the global word line and a selected memory cell. The write pulse control block may selectively enable any one of the high resistance path circuit and the bypass circuit in accordance with a position the selected memory cell.
Abstract:
A non-volatile memory apparatus includes a memory cell coupled between a global bit line and a global word line. A bit line control circuit configured to apply a bit line read bias voltage to the global bit line based on a read signal. A snap-back detection circuit coupled to the global word line, and configured to generate a data output signal and a current enable signal by detecting a snap-back of the memory cell. A word line control circuit configured to apply a word line read bias voltage to the global word line based on the read signal, and may increase an amount of a current flowing through the memory cell based on the current enable signal.
Abstract:
A semiconductor memory apparatus includes an access line control circuit. The access line control circuit applies a selected bias voltage to a selected access line coupled with a target memory cell and applies a first unselected bias voltage to an unselected access line adjacent to the selected access line. A second unselected bias voltage is applied to an unselected access line not adjacent to the selected access line.
Abstract:
A semiconductor device includes a memory array including a plurality of memory blocks. Each memory block includes a pipe transistor, a drain select transistor and a first memory cell connected between the pipe transistor and a bit line, and a source select transistor and a second memory cell connected between the pipe transistor and a common source line. The semiconductor device further includes an operation circuit configured to apply an operating voltage to a memory block selected to perform program and read operations, and a gate control circuit configured to control a gate of the pipe transistor included in an unselected memory block.
Abstract:
A semiconductor memory apparatus includes a memory cell. The semiconductor apparatus includes a current supply circuit configured to change a resistance state of the memory cell, by changing an amount of current flowing through the memory cell, with or without limiting a voltage level across the memory cell to a level of a clamping voltage based on a state of the memory cell.