摘要:
Disclosed are a complex oxide catalyst for dehydrogenation, a method of preparing the same, and use thereof, wherein the catalyst includes a first transition metal selected from the group consisting of gallium, vanadium, chromium, manganese, molybdenum, and zinc, a hydrogen-activating metal including at least one selected from the group consisting of Groups 8, 9, 10, and 11 elements in a periodic table, and alumina, the amount of the first transition metal being 0.1 wt % to 20 wt %, the amount of the hydrogen-activating metal being 0.01 wt % to 2 wt %, based on the amount of the alumina, the first transition metal being loaded on the alumina, and the hydrogen-activating metal being surrounded by the alumina.
摘要:
This invention relates to a hydrogen spillover-based catalyst and use thereof, wherein a hydrogen activation metal cluster is dispersed in the form of being encapsulated in a crystalline or amorphous aluminosilicate matrix which is partially or fully structurally collapsed zeolite, thereby exhibiting high hydroprocessing or dehydrogenation activity and suppressed C—C hydrogenolysis activity.
摘要:
Carbon dioxide adsorbents are provided. The carbon dioxide adsorbents include a polymeric amine and a porous support on which the polymeric amine is supported. the polymeric amine consists of a polymer skeleton containing nitrogen atoms and branched chains bonded to the nitrogen atoms of the polymer skeleton. Each of the branched chains contains at least one nitrogen atom. the polymeric amine is modified by substitution of at least one of the nitrogen atoms of the polymer skeleton or the branched chains with a hydroxyl group-containing carbon chain.
摘要:
The present disclosure relates to a method for preparing a multi-level pore zeolite, including: (A) a step of mixing a silicon precursor, an aluminum precursor, a phosphorus precursor, a structure directing agent and water; a step of (B) adding phenylphosphonic acid, carbon black or a mixture thereof to the mixture prepared in the step (A) and mixing the same; a step of (C) crystallizing the mixture prepared in the step (B) by heat-treating the same; and a step of (D) calcining the crystallization product, and utilization of the prepared multi-level pore zeolite as a catalyst for hydroisomerization of normal paraffins. The catalyst exhibits improved isoparaffin yield when it is used as a catalyst for hydroisomerization of normal paraffins such as diesel or lube base oil by supporting an active metal component because residence time of reactants and products in the zeolite crystals are decreased due to mesopores and the proportion of external acid sites to total acid sites is low. Also, cloud point and pour point are effectively improved and high hydroisomerization reactivity is achieved without product loss.