METHOD OF FABRICATION OF AN INTEGRATED THERMOELECTRIC CONVERTER, AND INTEGRATED THERMOELECTRIC CONVERTER THUS OBTAINED

    公开(公告)号:US20230301191A1

    公开(公告)日:2023-09-21

    申请号:US18323262

    申请日:2023-05-24

    CPC classification number: H10N10/855 H10N10/01 H10N10/17

    Abstract: A method of fabricating a thermoelectric converter that includes providing a layer of a Silicon-based material having a first surface and a second surface, opposite to and separated from the first surface by a Silicon-based material layer thickness; forming a plurality of first thermoelectrically active elements of a first thermoelectric semiconductor material having a first Seebeck coefficient, and forming a plurality of second thermoelectrically active elements of a second thermoelectric semiconductor material having a second Seebeck coefficient, wherein the first and second thermoelectrically active elements are formed to extend through the Silicon-based material layer thickness, from the first surface to the second surface; forming electrically conductive interconnections in correspondence of the first surface and of the second surface of the layer of Silicon-based material, for electrically interconnecting the plurality of first thermoelectrically active elements and the plurality of second thermoelectrically active elements, and forming an input electrical terminal and an output electrical terminal electrically connected to the electrically conductive interconnections, wherein the first thermoelectric semiconductor material and the second thermoelectric semiconductor material comprise Silicon-based materials selected among porous Silicon or polycrystalline SiGe or polycrystalline Silicon.

    PROCESS FOR MANUFACTURING A MICRO-ELECTRO-MECHANICAL DEVICE INCLUDING TWO CHAMBERS AT DIFFERENT PRESSURES AND RELATED MICRO-ELECTRO-MECHANICAL DEVICE

    公开(公告)号:US20240124299A1

    公开(公告)日:2024-04-18

    申请号:US18486044

    申请日:2023-10-12

    Abstract: Process for manufacturing a MEMS device, including: forming a dielectric region which coats part of a semiconductive substrate of a first semiconductive wafer; forming a region which is permeable to gases and coats the dielectric region; coupling the first semiconductive wafer to a second semiconductive wafer so as to form a first chamber, which houses a first movable mass and has a pressure equal to a first value, and a second chamber, which houses a second movable mass and has a pressure equal to the first value, the permeable region facing the second chamber; selectively removing a portion of the semiconductor substrate and an underlying portion of the dielectric region, so as to expose a part of the permeable region, so as to allow gas exchanges through the permeable region; placing the first and the second semiconductive wafers in an environment with a pressure equal to a second value, so that the pressure in the second chamber becomes equal to the second value; and subsequently forming, on the exposed part of the permeable region, a sealing region impermeable to gases.

    MEMS THERMOELECTRIC GENERATOR, MANUFACTURING PROCESS OF THE GENERATOR AND HEATING SYSTEM COMPRISING THE GENERATOR

    公开(公告)号:US20230389426A1

    公开(公告)日:2023-11-30

    申请号:US18318612

    申请日:2023-05-16

    CPC classification number: H10N10/17 H10N10/01 H10N10/82

    Abstract: MEMS thermoelectric generator comprising: a thermoelectric cell including one or more thermoelectric elements partially extending on a cavity of the thermoelectric cell; a thermoplastic layer extending on the thermoelectric cell and having a top surface and a bottom surface opposite to each other along a first axis, the bottom surface facing the thermoelectric cell and the thermoplastic layer being of thermally insulating material and configured to be processed through laser direct structuring, LDS, technique; a heat sink configured to exchange heat with the thermoelectric cell interposed, along the first axis, between the heat sink and the thermoplastic layer; and a thermal via of metal material, extending through the thermoplastic layer from the top surface to the bottom surface so that it is superimposed, along the first axis, on the cavity, wherein the thermoelectric cell may exchange heat with a thermal source through the thermal via.

    METHOD OF FABRICATION OF AN INTEGRATED THERMOELECTRIC CONVERTER, AND INTEGRATED THERMOELECTRIC CONVERTER THUS OBTAINED

    公开(公告)号:US20210359189A1

    公开(公告)日:2021-11-18

    申请号:US17321252

    申请日:2021-05-14

    Abstract: A method of fabricating a thermoelectric converter that includes providing a layer of a Silicon-based material having a first surface and a second surface, opposite to and separated from the first surface by a Silicon-based material layer thickness; forming a plurality of first thermoelectrically active elements of a first thermoelectric semiconductor material having a first Seebeck coefficient, and forming a plurality of second thermoelectrically active elements of a second thermoelectric semiconductor material having a second Seebeck coefficient, wherein the first and second thermoelectrically active elements are formed to extend through the Silicon-based material layer thickness, from the first surface to the second surface; forming electrically conductive interconnections in correspondence of the first surface and of the second surface of the layer of Silicon-based material, for electrically interconnecting the plurality of first thermoelectrically active elements and the plurality of second thermoelectrically active elements, and forming an input electrical terminal and an output electrical terminal electrically connected to the electrically conductive interconnections, wherein the first thermoelectric semiconductor material and the second thermoelectric semiconductor material comprise Silicon-based materials selected among porous Silicon or polycrystalline SiGe or polycrystalline Silicon.

    THERMOELECTRIC GENERATOR
    10.
    发明申请

    公开(公告)号:US20210242387A1

    公开(公告)日:2021-08-05

    申请号:US17158904

    申请日:2021-01-26

    Abstract: A thermoelectric generator includes a substrate and one or more thermoelectric elements on the substrate and each configured to convert a thermal drop across the thermoelectric elements into an electric potential by Seebeck effect. The thermoelectric generator includes a cavity between the substrate and the thermoelectric elements. The thermoelectric generator includes, within the cavity, a support structure for supporting the thermoelectric elements. The support structure has a thermal conductivity lower than a thermal conductivity of the substrate.

Patent Agency Ranking