Abstract:
A filtering circuit includes circuits for delivering first and second ramp-shaped signals when a logic signal to be filtered changes values, and includes logic circuits each with a switching threshold, for receiving the ramp-shaped signals. A memory unit delivers an output signal having a first value when outputs of the logic circuits have a first pair of values, and delivers a second value when the outputs of the logic circuits have a second pair of values. The filtering circuit may be applied to the filtering of an external clock signal in serial type memory devices.
Abstract:
The present invention relates to a sense amplifier for reading a memory cell, comprising a read node linked directly or indirectly to the memory cell, a first active branch connected to the read node, comprising means for supplying a read current at the read node, and a data output linked to one node of the first active branch at which a voltage representative of the conductivity state of the memory cell appears. According to the present invention, the sense amplifier comprises a second active branch connected to the read node, comprising means for supplying, at the read node, a current that is added to the current supplied by the first active branch, such that the voltage representative of the conductivity state of the memory cell remains substantially stable upon a current draw at the read node. Application particularly to reading non-volatile FLASH and EEPROM type memory cells.
Abstract:
An integrated circuit on a silicon substrate includes at least one polysilicon line and at least one antistatic contact connecting the polysilicon line to the silicon substrate. The antistatic contact includes a thin oxide layer between the polysilicon line and the silicon substrate. The thin oxide layer is of a sufficiently small thickness so that a current flows across it by the tunnel effect when the polysilicon line is brought, relatively to the substrate, to a voltage greater or less than determined thresholds.
Abstract:
A method for the correction of an erroneous bit in a string of bits includes providing, in the string of bits, for a first parity bit computed from the other bits of the string of bits at a point in time when the erroneous bit was valid. The correct value of the erroneous bit is computed by using the other bits of the string of bits comprising the parity bit. The erroneous bit is then replaced by its correct value. The method is applicable to error correction circuits in EEPROM memories.
Abstract:
The present invention relates to a read amplifier (SA2) comprising a read stage (RDST), a reference stage (RFST) and a differential output stage comprising PMOS and NMOS type transistors. According to the present invention, the transistors of the differential stage (DIFST2) comprise only one PMOS transistor (TP3) and one NMOS transistor (TN3) in series, the PMOS transistor (TP3) having its gate linked to one node of the read stage (RDST), the NMOS transistor (TN3) having its gate linked to one node of the reference stage (RFST), the mid-point of the PMOS and NMOS transistors of the differential stage forming a data output node (DATAOUT) of the read amplifier. The read amplifier according to the present invention has the combined advantages of a short read time and a low electrical consumption. Application to EPROM, EEPROM and FLASH type non-volatile memories.
Abstract:
An electrically erasable and programmable memory (EEPROM) includes a memory array containing memory cells connected to word lines arranged in rows and to bit lines arranged in columns. The memory array includes a first special zone for storing special bits of a first type, and a second special zone for storing special bits of a second type. The first special zone includes a first row of memory cells connected to a first word line, wherein N1 memory cells are connected to N1 bit lines of a determined column of the memory array. The second special zone includes a second row of memory cells connected to a second word line, wherein N2 memory cells are connected to N2 other bit lines of the determined column. The N1 bit lines are not connected to the second row of memory cells, and the N2 bit lines are not connected to the first row of memory cells.
Abstract:
An electrically programmable and erasable memory includes memory cells, with each memory cell including a floating gate transistor and an access transistor. The floating gate transistor has a first terminal connected to the access transistor. The memory includes circuitry for respectively applying during an erasing phase a first signal, and a second signal on the control gate and on a second terminal of the floating gate transistors of the memory cells to be erased. The circuitry also applies to the gates of the corresponding access transistors of the memory cells to be erased a signal having a voltage that is different from a voltage of the first signal and has a low or zero potential difference with respect to a voltage of the second signal. The memory is protected against the effects from a breakdown of the gate oxide of an access transistor.
Abstract:
A buffer circuit includes an input for receiving a logic signal, and a transfer circuit for transferring the logic signal from the input to an output of the buffer circuit. The transfer circuit includes at least one logic gate having a trip point sensitive to a supply voltage of the buffer circuit. The buffer circuit further includes a delivery circuit for delivering an inhibit signal having a predetermined duration when the logic signal has a trailing edge and/or leading edge, and an inhibit circuit for inhibiting the transfer circuit and for isolating the output of the buffer circuit from the input of the buffer circuit when the inhibit signal is delivered. A storage circuit holds a logic value of the logic signal at the output of the buffer circuit when the inhibit signal is delivered.