Abstract:
The invention relates to a process for protection of the grid of a transistor in an integrated circuit for production of a local interconnection pad straddling over the grid and the silicon substrate on which it is formed. The process consists of applying a double dielectric-conducting layer on the transistor grid into which a polysilicon layer is added in order to use the selectivity principle, which is large considering the etching of polysilicon with respect to the oxide in which the local interconnection pad is formed. Furthermore, with the process according to the invention, a silicidation treatment can be applied beforehand on the active areas of the transistor and the grid.
Abstract:
An isolation trench formed in a semiconductor substrate has side walls and a bottom wall. Spacers are on the side walls and face each other for forming a narrow channel therebetween. The bottom wall and the spacers are coated with an electrically insulating material for delimiting a closed empty cavity in the channel. The isolation trench is applicable to the manufacture of integrated circuits.
Abstract:
The invention relates to a DRAM integration method that does away with the alignment margins inherent to the photoetching step of the upper electrode of the capacitance for inserting the bit line contact. The removal of the upper electrode is self-aligned on the lower electrode of the capacitance. This is accomplished by forming a difference in topography at the point where the opening of the upper electrode is to be made, and depositing a non-doped polysilicon layer on the upper electrode. An implantation of dopants is performed on this layer, and the part of the non-doped layer located in the lower part of the zone showing the difference in topography is selectively etched. The remainder of the polysilicon layer and the part of the upper electrode located in the lower layer are also etched.
Abstract:
Prior fabricating the transistors, a phase of forming a deep insulative trench in the substrate is followed by a phase of forming a shallow insulative trench in the substrate and extending the deep trench. The phase of forming the deep trench includes coating the inside walls of the deep trench with an initial oxide layer and filling the deep trench with silicon inside an envelope formed from an insulative material. The phase of forming the shallow trench includes coating the inside walls of the shallow trench with an initial oxide layer and filling the shallow trench with an insulative material.
Abstract:
A method is provided for fabricating integrated electronic components. According to the method, an initial structure is produced on the surface of a first substrate. This initial structure incorporates a defined pattern formed from volumes of differentiated materials. At least part of the initial substrate that includes the defined pattern is transferred onto a second substrate, preferably by inverting the first substrate against the second substrate and then removing the first substrate. An additional structure is then produced on the second substrate. This additional structure includes volumes of material placed in correspondence with some of the volumes of differentiated material of the defined pattern. The electronic components thus produced may have a suitable configuration in accordance with technological or geometrical constraints. In a preferred method, a selective treatment is applied to the transferred part of the initial structure, so as to make a distinction between the volumes of differentiated material of the pattern.