Abstract:
A method for high throughput mechanical property testing of materials libraries using capacitance. The method monitors the responses of a plurality of samples on a substrate to a force induced by a capacitor.
Abstract:
An apparatus and method for screening combinatorial libraries of materials by measuring the response of individual library members to mechanical perturbations is described. The apparatus generally includes a sample holder for containing the library members, an array of probes for mechanically perturbing individual library members, and an array of sensors for measuring the response of each of the library members to the mechanical perturbations. Library members undergoing screening make up a sample array, and individual library members constitute elements of the sample array that are confined to specific locations on the sample holder. During screening, the apparatus mechanically perturbs individual library members by displacing the sample array (sample holder) and the array of probes. Typically, all of the elements of the sample array are perturbed simultaneously, but the apparatus also can also perturb individual or groups of sample array elements sequentially. The flexible apparatus and method can screen libraries of materials based on many different bulk physical properties, including Young's modulus (flexure, uniaxial extension, biaxial compression, and shear); hardness (indentation), failure (stress and strain at failure, toughness), adhesion (tack, loop tack), and flow (viscosity, melt flow indexing, and rheology), among others.
Abstract:
Gas chromatographs of the invention generally comprise four or more analysis channels. Specifically, four or more gas chromatography columns are configured for parallel analysis of four or more gaseous samples with detection being effected using a microdetector array comprising four or more microdetectors. In one embodiment, the four or more microdetectors 510 are microfabricated detectors, and are integrally formed with a substrate or with one or more microchip bodies mounted on a substrate. In a preferred embodiment, a microdetector array comprises four or more thermal conductivity detectors having one or more thin-film detection filaments. A preferred heated environment for highly parallel gas chromatographs is also disclosed.
Abstract:
The present invention provides instruments and methods for screening combinatorial libraries that addresses many of the problems encountered when using conventional instruments. For example, the disclosed instruments can measure mechanical properties of library members in rapid serial or parallel test format, and can perform tests on small amounts of material, which are easily prepared or dispensed using art-disclosed liquid or solid handling techniques. Compared to conventional instruments, the disclosed instruments afford faster sample loading and unloading, for example, through the use of disposable libraries of material samples.
Abstract:
A method for high throughput mechanical property and bulge testing of materials libraries. A plurality of samples on a substrate are monitored for their response to a force from a fluid.
Abstract:
A method for high throughput mechanical property testing of materials libraries using a piezoelectric. A plurality of samples on a substrate are monitored for their response to a force applied piezoelectrically.
Abstract:
A method for high throughput mechanical property testing of materials libraries using capacitance. The method monitors the responses of a plurality of samples on a substrate to a force induced by a capacitor.