Abstract:
Systems, methods, and devices are provided herein for recording operation history of a remotely controlled vehicle. The recorded operation history may comprise outgoing operation commands sent from a remote controller of a remotely controlled vehicle, as well as incoming operation commands received by the remotely controlled vehicle. The recorded operation history may further comprise vehicle status data, such as data related to an operation process of the remotely controlled vehicle. The recorded operation history of a vehicle may be used to analyze a behavior of the vehicle.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Apparatuses, systems and methods to ameliorate adverse effects upon the occupant based on predicted movements are provided. Predictions to movements of the vehicle can be accomplished by detecting operations of one or more velocity control mechanisms, and/or using various types of sensors. One or more processors can be used to derive the predicted movements, and to issue actuation signals to actuators to alter operations of the vehicle and/or a seat or other controlled devices with which the occupant interacts within the vehicle.
Abstract:
An unmanned aerial vehicle (UAV) includes one or more propulsion units that effect flight of the UAV, an application processing circuit configured to verify a validity of a system image of the UAV in a secure environment, and a flight control circuit operably coupled to the application processing circuit. Generation and/or transmission of control signals from the flight control circuit to one or more electronic speed controllers (ESC controllers) is prevented prior to verification of the validity of the system image.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
Systems, methods, and devices are provided herein for recording operation history of a remotely controlled vehicle. The recorded operation history may comprise outgoing operation commands sent from a remote controller of a remotely controlled vehicle, as well as incoming operation commands received by the remotely controlled vehicle. The recorded operation history may further comprise vehicle status data, such as data related to an operation process of the remotely controlled vehicle. The recorded operation history of a vehicle may be used to analyze a behavior of the vehicle.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
An unmanned aerial vehicle (UAV) includes a sensor configured to detect an indicator of a geo-fencing device; and a flight controller configured to generate one or more signals that cause the UAV to operate in accordance with a set of flight regulations that are generated based on the detected indicator of the geo-fencing device.
Abstract:
A method of operating a mobile platform includes determining a threshold angle relative to the mobile platform of an imaging device mounted to the mobile platform that avoids obstruction of a field-of-view of the imaging device by one or more components of the mobile platform, and controlling the mobile platform according to the threshold angle.