摘要:
Compositions and methods are described herein for inducing reprogramming of non-pluripotent cells across lineage and differentiation boundaries to generate endodermal progenitor cells and hepatocytes. Compositions and methods for expansion of endodermal progenitor cells without loss of phenotype are also described herein.
摘要:
Methods and compositions for transdifferentiation of an animal cell from (i) a first pluripotent cell fate to a second nonpluripotent cell fate or (ii) from a non-pluripotent mesodermal, endodermal, or ectodermal cell fate to a different non-pluripotent mesodermal, endodermal, or ectodermal cell fate.
摘要:
The present invention provides for identification and use of small molecules to induce pluripotency in mammalian cells as well as other methods of inducing pluripotency.
摘要:
Methods and compositions for transdifferentiation of an animal cell from (i) a first pluripotent cell fate to a second nonpluripotent cell fate or (ii) from a non-pluripotent mesodermal, endodermal, or ectodermal cell fate to a different non-pluripotent mesodermal, endodermal, or ectodermal cell fate.
摘要:
The present invention provides for identification and use of small molecules to induce pluripotency in mammalian cells as well as other methods of inducing pluripotency.
摘要:
The present invention provides for identification and use of small molecules to induce pluripotency in mammalian cells as well as other methods of inducing pluripotency.
摘要:
The present invention relates to compositions comprising factor VIII coagulation factors linked to extended recombinant polypeptide (XTEN), isolated nucleic acids encoding the compositions and vectors and host cells containing the same, and methods of making and using such compositions in treatment of factor VIII-related diseases, disorders, and conditions.
摘要:
The slow kinetics and low efficiency of reprogramming methods to generate human induced pluripotent stem cells (iPSCs) impose major limitations on their utility in biomedical applications. Here we describe a chemical approach that dramatically improves (>200 fold) the efficiency of iPSC generation from human fibroblasts, within seven days of treatment. This will provide a basis for developing safer, more efficient, non-viral methods for reprogramming human somatic cells.
摘要:
The present invention provides for the generation and maintenance of pluripotent cells by culturing the cells in the presence of an ALK5 inhibitor.
摘要:
The present invention provides methods of generating a neuronal cell from a differentiated non-neuronal cell by increasing the amount of a miR-124 microRNA, a MYT1L transcription factor, and a BRN2 transcription factor in the differentiated non-neuronal cell.