Abstract:
According to example embodiments, an optical measurement apparatus may include: a station configured to support a measurement target; an image acquisition unit configured to acquire a one-dimensional (1D) line image of the measurement target; a driver configured to move the station and the image acquisition unit; and a controller. The controller may be configured to control the driver and the image acquisition unit to acquire a plurality of 1D line images of the measurement target while varying a distance between the image acquisition unit and the measurement target to generate a two-dimensional (2D) scan image from combining the plurality of 1D line images; and to detect a pattern of the measurement target based on comparing a plurality of 2D reference images and the 2D scan image. The optical measurement apparatus may measure critical dimensions of non-repeating ultrafine patterns at high speed.
Abstract:
An extreme ultraviolet (EUV) generation device includes a housing module including a housing body whose inside is maintained in a vacuum state and an exit window formed on one side of the housing body, a laser source which emits lasers toward the inside of the housing body through the exit window, a plasma generation module which is located inside the housing body and generates plasma by allowing the lasers to be emitted toward a plasma gas, which flows into a laser focal area, and a radio frequency (RF) power supply module which preionizes the plasma gas before the plasma gas flows into the laser focal area.
Abstract:
A wafer inspection apparatus includes a linear stage configured to support a chuck on which a wafer is disposed and to move the chuck along a guide rail, wherein the guide rail extends in a first direction, an image sensor module overlapping the linear stage, and a rotary stage supported by the linear stage. The rotary stage is configured to rotate the chuck in a state where a center of the wafer is aligned with the image sensor module. The image sensor module includes a light source directing light onto the wafer, and an image sensor extending in a second direction crossing the first direction.
Abstract:
An inspection apparatus includes a light source. A first measurement unit is configured to receive light from the light source and direct it to a first measurement object. A second measurement unit is configured to receive the light from the light source and direct it to a second measurement object. An inspection unit is configured to receive a first optical signal provided from the first measurement unit and inspect the first measurement object using the first optical signal, and to receive a second optical signal provided from the second measurement unit and inspect the second measurement object using the second optical signal. A measurement position selection unit is configured to alternately enable the inspection of the two measurement units by adjusting an angle of a reflection mirror.
Abstract:
An inspection apparatus includes a light source. A first measurement unit is configured to receive light from the light source and direct it to a first measurement object. A second measurement unit is configured to receive the light from the light source and direct it to a second measurement object. An inspection unit is configured to receive a first optical signal provided from the first measurement unit and inspect the first measurement object using the first optical signal, and to receive a second optical signal provided from the second measurement unit and inspect the second measurement object using the second optical signal. A measurement position selection unit is configured to alternately enable the inspection of the two measurement units by adjusting an angle of a reflection mirror.
Abstract:
A wafer inspection apparatus includes a linear stage configured to support a chuck on which a wafer is disposed and to move the chuck along a guide rail, wherein the guide rail extends in a first direction, an image sensor module overlapping the linear stage, and a rotary stage supported by the linear stage. The rotary stage is configured to rotate the chuck in a state where a center of the wafer is aligned with the image sensor module. The image sensor module includes a light source directing light onto the wafer, and an image sensor extending in a second direction crossing the first direction.
Abstract:
An illumination optic system includes a convex mirror to reflect light from a light source to towards a lens. The light source is at a first focus position and the lens is at a second focus position of the mirror. The system also includes a reflector to reflect light not incident on the lens toward the convex mirror. The reflector has a light guide hole to guide light to the incidence surface of the lens.