摘要:
A method of providing an augmented reality (AR) content in a vehicle, and/or a wearable AR device and an electronic device for performing a method. The wearable AR device may include a processor and a memory storing instructions to be executed by the processor, and when the instructions are executed by the processor, the processor is configured to: determine whether the wearable AR device is in a space of the vehicle based on at least one of information received from the vehicle or a value measured using at least one sensor of the wearable AR device; when it is determined that the wearable AR device is not in the space of the vehicle, output an AR content corresponding to a space around the wearable AR device based on the value measured using the at least one sensor of the wearable AR device; when it is determined that the wearable AR device is in the space of the vehicle, determine whether there are anchor devices of the vehicle capable of communicating with the wearable AR device; and when it is determined that there are the anchor devices capable of communication, output an AR content corresponding to a space of the vehicle around the wearable AR device by communicating with the anchor devices.
摘要:
A capacitor including a lower electrode; an upper electrode apart from the lower electrode; and a between the lower electrode and the upper electrode, the dielectric including a dielectric layer including TiO2, and a leakage current reducing layer including GeO2 in the dielectric layer. Due to the leakage current reducing layer, a leakage current is effectively reduced while a decrease in the dielectric constant of the dielectric thin-film is small.
摘要:
A semiconductor device may comprise a stack structure on a substrate, the stack structure including a plurality of dielectric layers and a plurality of transparent conductive oxide layers, the dielectric layers and the transparent conductive oxide layers are alternately stacked, each of the dielectric layers and a corresponding one of the transparent conductive oxide layer adjacent to each other in a vertical direction have equal horizontal widths, and a channel structure extending through the stack structure, the channel structure including an information storage layer, a channel layer inside the information storage layer, and a buried dielectric layer inside the channel layer.
摘要:
An X-ray generation apparatus includes: an electron emission device comprising a plurality of electron emission units that emit electrons; a transmission type X-ray emission unit for emitting an X-ray by electrons emitted by the plurality of electron emission units; and a vacuum chamber for shielding the electron emission device and the transmission type X-ray emission unit by using vacuum. An X-ray imaging system includes an X-ray detection apparatus for detecting an X-ray that is irradiated from the X-ray generation apparatus and passes through an object.
摘要:
A method of manufacturing, by atomic layer deposition, an electrode including a perovskite type crystal structure represented by Formula 1, includes: forming a vanadium-containing precursor on a substrate; forming a vanadium-containing intermediate phase by reacting the vanadium-containing precursor with oxygen molecules; and forming a first thin film by reacting the vanadium-containing intermediate phase with water.
摘要:
A capacitor is provided. The capacitor includes a first electrode, a second electrode disposed to face the first electrode, a dielectric layer of a rutile phase, disposed between the first electrode and the second electrode, and an interface layer between the first electrode and the dielectric layer, wherein the interface layer includes a first interface layer and a second interface layer, the first interface layer is adjacent to the first electrode, the second interface layer is adjacent to the dielectric layer, the first interface layer includes a conductive metal oxide having a work function in a range of about 4.8 eV to about 6.0 eV, the second interface layer includes a metal oxide having a rutile-phase crystal structure, and a thickness of the second interface layer is smaller than a thickness of the first interface layer.
摘要:
Provided is a capacitor including a first thin film electrode layer, a second thin film electrode layer, a dielectric layer disposed between the first thin film electrode layer and the second thin film electrode layer, and an interlayer disposed between the second thin film electrode layer and the dielectric layer. Due to the interlayer, the decrease in permittivity of the dielectric layer is small while leakage current may be effectively reduced.
摘要:
Provided are a dielectric thin film, an integrated device including the same, and a method of manufacturing the dielectric thin film. The dielectric thin film includes an oxide having a perovskite-type crystal structure represented by Formula 1 below and wherein the dielectric thin film comprises 0.3 at % or less of halogen ions or sulfur ions. A2-xB3-yO10-z In Formula 1, A, B, x, y, and z are disclosed in the specification.
摘要:
A method and apparatus for an electronic device and sensor includes: a housing; at least one sensor disposed on a part of the housing to detect an external image of the electronic device or sound. A communication circuit cis arranged in the housing, and at least one processor is electrically connected to the at least one sensor and the communication circuit. A memory stores instructions that, when executed, cause the at least one processor to control operation of the at least one sensor to operate as a user interface of the electronic device, and/or to operate as a sensing device for detecting a movement and/or sound of an object within a selected range or space, and to provide data based at least partly on the detected movement and/or sound.
摘要:
Provided is a method of preparing a dielectric film having a nanoscale three-dimensional shape and including an oxide, the oxide represented by RAMBOC where R is a divalent element and M is a pentavalent element, the method may include synthesizing a target material, the target material including the divalent element and the pentavalent element; and forming the oxide by depositing the divalent element and the pentavalent element, from the target material, onto a substrate such that the oxide includes a perovskite-type crystal structure, 1.3