Abstract:
An integrated circuit (IC) includes at least one unit cell. The at least one unit cell includes a first bit circuit configured to process a first bit signal, a second bit circuit configured to process a second bit signal, a first well spaced apart from boundaries of the at least one unit cell and biased to a first voltage, and a second well biased to a second voltage that is different from the first voltage. Each of the first and second bit circuits includes at least one transistor from among a plurality of transistors disposed in the first well.
Abstract:
An integrated circuit may include a first active region and a second active region, and the first and second active regions may extend on a substrate in a first horizontal direction in parallel to each other and have different conductivity types from each other. A first gate line may extend in a second horizontal direction crossing the first horizontal direction, and may form a first transistor with the first active region. The first transistor may include a gate to which a first input signal is applied. The first gate line may include a first partial gate line that overlaps the first active region in a perpendicular direction and that has an end on a region between the first and second active regions.
Abstract:
An integrated circuit (IC) includes at least one unit cell. The at least one unit cell includes a first bit circuit configured to process a first bit signal, a second bit circuit configured to process a second bit signal, a first well spaced apart from boundaries of the at least one unit cell and biased to a first voltage, and a second well biased to a second voltage that is different from the first voltage. Each of the first and second bit circuits includes at least one transistor from among a plurality of transistors disposed in the first well.
Abstract:
An integrated circuit may include a first active region and a second active region, and the first and second active regions may extend on a substrate in a first horizontal direction in parallel to each other and have different conductivity types from each other. A first gate line may extend in a second horizontal direction crossing the first horizontal direction, and may form a first transistor with the first active region. The first transistor may include a gate to which a first input signal is applied. The first gate line may include a first partial gate line that overlaps the first active region in a perpendicular direction and that has an end on a region between the first and second active regions.
Abstract:
A scan flip-flop includes an input unit and a flip-flop. The input unit is configured to select one signal from among a data input signal and a scan input signal to supply the selected one signal as an internal signal according to an operation mode. The flip-flop is configured to latch the internal signal according to a clock signal. The flip-flop includes a cross coupled structure that includes first and second tri-state inverters which share a first output node and face each other.
Abstract:
A scan flip-flop includes an input unit and a flip-flop. The input unit is configured to select one signal from among a data input signal and a scan input signal to supply the selected one signal as an internal signal according to an operation mode. The flip-flop is configured to latch the internal signal according to a clock signal. The flip-flop includes a cross coupled structure that includes first and second tri-state inverters which share a first output node and face each other.
Abstract:
An integrated circuit may include a first active region and a second active region, and the first and second active regions may extend on a substrate in a first horizontal direction in parallel to each other and have different conductivity types from each other. A first gate line may extend in a second horizontal direction crossing the first horizontal direction, and may form a first transistor with the first active region. The first transistor may include a gate to which a first input signal is applied. The first gate line may include a first partial gate line that overlaps the first active region in a perpendicular direction and that has an end on a region between the first and second active regions.
Abstract:
An integrated circuit may include a first active region and a second active region, and the first and second active regions may extend on a substrate in a first horizontal direction in parallel to each other and have different conductivity types from each other. A first gate line may extend in a second horizontal direction crossing the first horizontal direction, and may form a first transistor with the first active region. The first transistor may include a gate to which a first input signal is applied. The first gate line may include a first partial gate line that overlaps the first active region in a perpendicular direction and that has an end on a region between the first and second active regions.
Abstract:
An integrated circuit (IC) includes a first circuit, a first well and a second circuit. The first circuit is disposed on a substrate and configured to shift a first bit signal between a first voltage logic level and a second logic voltage level. The first well is disposed in a cell on the substrate and biased to a first voltage. The first well is spaced apart from a first edge of the cell. The second well is disposed in the cell and biased to a second voltage. The second well is disposed to contact a second edge of the cell opposite to the first edge. The first circuit includes a plurality of transistors respectively disposed in the first and second wells.
Abstract:
A semiconductor device includes a logic region disposed in a central region of the semiconductor device, and a peripheral region disposed in an outer region thereof. The logic region includes a line-shaped logic transistor and a box-shaped decoupling capacitor. The peripheral region includes a line-shaped peripheral transistor and a line-shaped peripheral dummy transistor disposed adjacent to the peripheral transistor.