Abstract:
A semiconductor memory device having a flexible refresh skip area includes a memory cell array including a plurality of rows to store data, a row decoder connected to the memory cell array, a refresh area storage unit to store a beginning address and an end address of a memory area that is to be refreshed in which the memory area that is to be refreshed does not include a refresh skip area having a size is selectively and/or adaptively changed, and a refresh control circuit connected to the row decoder and the refresh area storage unit. The refresh control circuit controls a refresh operation for the area that is to be refreshed and not for the refresh skip area.
Abstract:
A memory system includes a memory module and a memory controller. The memory module includes a plurality of memory devices with corresponding ZQ calibration circuits therein. The memory controller, which is electrically coupled to the memory module, includes a ZQ global managing circuit therein. This ZQ global managing circuit is configured to determine a plurality of calibration values associated the corresponding ZQ calibration circuits in the plurality of memory devices, in response to calibration result data generated by the plurality of ZQ calibration circuits. The memory module is mounted within a memory slot. In addition, the plurality of calibration values account for signal loading characteristics of the memory module within the memory slot.
Abstract:
A semiconductor memory device capable of detecting a miscorrected bit generated in the semiconductor memory device outside the semiconductor memory device and a memory system including the semiconductor memory device are disclosed. The semiconductor memory device may generate first check bits based on first data received from the outside, divide an error correcting code (ECC) code word including the first data and the first check bits into a plurality of code word groups, and dispose a miscorrected bit, caused by error bits included in a first ECC code word group, in another ECC code word group rather than the first ECC code word group.
Abstract:
A rendering system includes: a ray generator configured to generate a ray; a memory chip configured to store information about objects in three-dimensional (3D) space; an intersection tester embedded in the memory chip and configured to perform an intersection test between the ray and the objects by using the information about the objects and information about the ray; and a shader configured to perform pixel shading based on a result of the intersection test.
Abstract:
An error correcting method of a semiconductor memory device includes receiving first data from outside the semiconductor memory device. First check bits are generated based on the first data and a first parity generator matrix. The first parity generator matrix includes a plurality of columns of bits. The plurality of columns of bits are arranged in a plurality of parity generator matrix groups. An error correcting code (ECC) code word including a plurality of ECC code word groups is stored in the plurality of memory cell groups. Each of the plurality of ECC code word groups have the first data and the first check bits. The plurality of ECC code word groups correspond to the plurality of parity generator matrix groups, respectively. For each parity generator matrix group of the first parity generator matrix, a result value of a bit-by-bit exclusive OR (XOR) operation performed on any two columns included in the parity generator matrix group is equal to a column number of a column that is not included in the parity generator matrix group. Thus, when a first ECC code word group, from among the plurality of ECC code word groups, includes error bits, a miscorrected bit that would be caused by the error bits as a result of performing an error correction operation on the first ECC code word group is located in an ECC code word group other than the first ECC code word group.
Abstract:
A semiconductor memory device having a flexible refresh skip area includes a memory cell array including a plurality of rows to store data, a row decoder connected to the memory cell array, a refresh area storage unit to store a beginning address and an end address of a memory area that is to be refreshed in which the memory area that is to be refreshed does not include a refresh skip area having a size is selectively and/or adaptively changed, and a refresh control circuit connected to the row decoder and the refresh area storage unit. The refresh control circuit controls a refresh operation for the area that is to be refreshed and not for the refresh skip area.
Abstract:
A semiconductor memory device having a flexible refresh skip area includes a memory cell array including a plurality of rows to store data, a row decoder connected to the memory cell array, a refresh area storage unit to store a beginning address and an end address of a memory area that is to be refreshed in which the memory area that is to be refreshed does not include a refresh skip area having a size is selectively and/or adaptively changed, and a refresh control circuit connected to the row decoder and the refresh area storage unit. The refresh control circuit controls a refresh operation for the area that is to be refreshed and not for the refresh skip area.
Abstract:
A semiconductor memory device having a flexible refresh skip area includes a memory cell array including a plurality of rows to store data, a row decoder connected to the memory cell array, a refresh area storage unit to store a beginning address and an end address of a memory area that is to be refreshed in which the memory area that is to be refreshed does not include a refresh skip area having a size is selectively and/or adaptively changed, and a refresh control circuit connected to the row decoder and the refresh area storage unit. The refresh control circuit controls a refresh operation for the area that is to be refreshed and not for the refresh skip area.
Abstract:
A memory system includes a memory module and a memory controller. The memory module includes a plurality of memory devices with corresponding ZQ calibration circuits therein. The memory controller, which is electrically coupled to the memory module, includes a ZQ global managing circuit therein. This ZQ global managing circuit is configured to determine a plurality of calibration values associated the corresponding ZQ calibration circuits in the plurality of memory devices, in response to calibration result data generated by the plurality of ZQ calibration circuits. The memory module is mounted within a memory slot. In addition, the plurality of calibration values account for signal loading characteristics of the memory module within the memory slot.