Abstract:
An image sensor and a method of fabricating the same are provided. The image sensor includes a substrate including photoelectric elements, a first color filter disposed on the substrate, a second color filter disposed on the substrate to be adjacent to the first color filter, a covering film disposed between sidewalls of the first and second color filters, and an air gap formed in the covering film.
Abstract:
A unit pixel of an image sensor is provided. The unit pixel includes a photoelectric conversion element configured to generate photocharge varying with the intensity of incident light, a transfer transistor configured to transfer the photocharge to a floating diffusion in response to a transfer control signal, and a supplemental transistor connected to the floating diffusion. Because the unit pixel includes only one transistor in addition to the transfer transistor, the area of the unit pixel is minimized, and, as a result, the resolution of a pixel array is increased and the power consumption of the pixel array is decreased.
Abstract:
A method of generating a pixel array layout for an image sensor (wherein the image sensor includes a plurality of unit pixels, and each of the plurality of unit pixels includes a plurality of transistors) includes forming each unit pixel to include a shallow trench isolation (STI). The STI is between a deep trench isolation (DTI) area and one of a p-well region and source and drain regions of each transistor. The p-well region is below a gate of each of the transistors, and the DTI area is filled with at least two materials.
Abstract:
Image sensors and image processing devices including the image sensors are provided. The image sensors may include a semiconductor substrate including a plurality of pixel areas, a photodiode provided in the semiconductor substrate in one of the plurality of pixel areas and a transfer transistor having a transfer gate electrode. A portion of the transfer gate electrode may be in the semiconductor substrate and may extend toward the photodiode. The image sensors may also include a floating diffusion configured to accumulate charges transferred from the photodiode by the transfer transistor, and the floating diffusion may include a first area and a second area disposed on different sides of the transfer gate electrode.
Abstract:
An image sensor includes a substrate having a first pixel region and a second pixel region adjacent to the first pixel region, a device isolation layer between the first pixel region and the second pixel region and isolating the first pixel region and the second pixel region from each other, a first transistor disposed in the first pixel region, a second transistor disposed in the second pixel region, and a wiring structure electrically connecting the first transistor and the second transistor. The device isolation layer has a deep trench isolation (DTI) structure which extends from a top surface toward a bottom surface of the substrate.
Abstract:
An image sensor includes a first pixel that is in an active pixel region, a second pixel that is in a dummy region adjacent the active pixel region, and a first deep trench isolation (DTI) formed between the first pixel and the second pixel.
Abstract:
An image sensor includes a first pixel that is in an active pixel region, a second pixel that is in a dummy region adjacent the active pixel region, and a first deep trench isolation (DTI) formed between the first pixel and the second pixel.
Abstract:
A pixel of an image sensor includes a color filter configured to pass visible wavelengths, and an infrared cut-off filter disposed on the color filter configured to cut off infrared wavelengths.
Abstract:
A unit pixel of an image sensor which operates in global shutter mode is provided. The unit pixel includes a photo diode area including a photo diode configured to accumulate photocharges generated from incident light during a first period and a storage diode area including a storage diode configured to receive and store the photocharges from the photo diode. The photo diode corresponds to a micro lens that focuses the incident light.
Abstract:
A unit pixel of an image sensor is provided. The unit pixel includes a photoelectric conversion element configured to generate photocharge varying with the intensity of incident light, a transfer transistor configured to transfer the photocharge to a floating diffusion in response to a transfer control signal, and a supplemental transistor connected to the floating diffusion. Because the unit pixel includes only one transistor in addition to the transfer transistor, the area of the unit pixel is minimized, and, as a result, the resolution of a pixel array is increased and the power consumption of the pixel array is decreased.