Abstract:
Methods of forming a semiconductor device may include forming a fin-type active pattern that extends in a first direction on a substrate, the fin-type active pattern including a lower pattern on the substrate and an upper pattern on the lower pattern. A field insulating layer is formed on the substrate, the sidewalls of the fin-type active pattern, and a portion upper pattern protruding further away from the substrate than a top surface of the field insulating layer. A dummy gate pattern that intersects the fin-type active pattern and that extends in a second direction that is different from the first direction is formed. The methods include forming dummy gate spacers on side walls of the dummy gate pattern, forming recesses in the fin-type active pattern on both sides of the dummy gate pattern and forming source and drain regions on both sides of the dummy gate pattern.
Abstract:
A semiconductor device includes at least one nanowire that is disposed over a substrate, extends to be spaced apart from the substrate, and includes a channel region, a gate that surrounds at least a part of the channel region, and a gate dielectric film that is disposed between the channel region and the gate. A source/drain region that contacts one end of the at least one nanowire is formed in a semiconductor layer that extends from the substrate to the one end of the at least one nanowire. Insulating spacers are formed between the substrate and the at least one nanowire. The insulating spacers are disposed between the gate and the source/drain region and are formed of a material that is different from a material of the gate dielectric film.
Abstract:
A transistor and a method of manufacturing the same are disclosed. The transistor includes a first epitaxial layer, a channel layer, a gate structure and an impurity region. The first epitaxial layer on a substrate includes a silicon-germanium-tin (SixGe1-x-ySny) single crystal having a lattice constant greater than a lattice constant of a germanium (Ge) single crystal. The channel layer is disposed adjacent to the first epitaxial layer. The channel layer includes the germanium single crystal. The gate structure is disposed on the channel layer. The impurity region is disposed at an upper portion of the channel layer adjacent to the gate structure.
Abstract:
The inventive concepts provide tunneling field effect transistors. The tunneling field effect transistor includes a source region, a drain region, a channel region, and a pocket region. The channel region includes a first material, and is disposed between the source region and the drain region. The pocket region includes a second material, and is disposed between the source region and the drain region. The channel region includes a first region adjacent to the source region, and a second region adjacent to the drain region. A first energy band gap of the first region is smaller than a second energy band gap of the second region, and a third energy band gap of the pocket region is different from the first energy band gap and the second energy band gap.
Abstract:
A semiconductor device includes a plurality of active fins defined by an isolation layer on a substrate, a gate structure on the active fins and the isolation layer, and a gate spacer structure covering a sidewall of the gate structure. A sidewall of the gate structure includes first, second, and third regions having first, second, and third slopes, respectively. The second slope increases from a bottom toward a top of the second region. The second slope has a value at the bottom of the second region less than the first slope. The third slope is greater than the second slope.
Abstract:
A semiconductor device includes a plurality of active fins defined by an isolation layer on a substrate, a gate structure on the active fins and the isolation layer, and a gate spacer structure covering a sidewall of the gate structure. A sidewall of the gate structure includes first, second, and third regions having first, second, and third slopes, respectively. The second slope increases from a bottom toward a top of the second region. The second slope has a value at the bottom of the second region less than the first slope. The third slope is greater than the second slope.
Abstract:
A semiconductor device includes at least one nanowire that is disposed over a substrate, extends to be spaced apart from the substrate, and includes a channel region, a gate that surrounds at least a part of the channel region, and a gate dielectric film that is disposed between the channel region and the gate. A source/drain region that contacts one end of the at least one nanowire is formed in a semiconductor layer that extends from the substrate to the one end of the at least one nanowire. Insulating spacers are formed between the substrate and the at least one nanowire. The insulating spacers are disposed between the gate and the source/drain region and are formed of a material that is different from a material of the gate dielectric film.
Abstract:
A fin field effect transistor includes a first fin structure and a second fin structures both protruding from a substrate, first and second gate electrodes on the first and second fin structures, respectively, and a gate dielectric layer between each of the first and second fin structures and the first and second gate electrodes, respectively. Each of the first and second fin structures includes a buffer pattern on the substrate, a channel pattern on the buffer pattern, and an etch stop pattern provided between the channel pattern and the substrate. The etch stop pattern includes a material having an etch resistivity greater than that of the buffer pattern.
Abstract:
A semiconductor device, including a first fin-type pattern; a first gate spacer on the first fin-type pattern, intersecting the first fin-type pattern, and including an upper portion and a lower portion; a second gate spacer on the first fin-type pattern, intersecting the first fin-type pattern, and being spaced apart from the first gate spacer; a first trench defined by the first gate spacer and the second gate spacer; a first gate electrode partially filling the first trench; a first capping pattern on the first gate electrode and filling the first trench; and an interlayer insulating layer covering an upper surface of the capping pattern, a width of the upper portion of the first gate spacer decreasing as a distance from an upper surface of the first fin-type pattern increases, and an outer sidewall of the upper portion of the first gate spacer contacting the interlayer insulating layer.
Abstract:
A semiconductor device includes at least one nanowire that is disposed over a substrate, extends to be spaced apart from the substrate, and includes a channel region, a gate that surrounds at least a part of the channel region, and a gate dielectric film that is disposed between the channel region and the gate. A source/drain region that contacts one end of the at least one nanowire is formed in a semiconductor layer that extends from the substrate to the one end of the at least one nanowire. Insulating spacers are formed between the substrate and the at least one nanowire. The insulating spacers are disposed between the gate and the source/drain region and are formed of a material that is different from a material of the gate dielectric film.