Abstract:
A method includes receiving an input signal representative of a desired two-dimensional non-uniform dose pattern for a front surface of a workpiece, driving the workpiece relative to an ion beam to distribute the ion beam across the front surface of the workpiece, and controlling at least one parameter of an ion implanter when the ion beam is incident on the front surface of the workpiece to directly create the desired two-dimensional non-uniform dose pattern in one pass of the front surface of workpiece relative to the ion beam. The beam may be a scanned beam or a ribbon beam. An ion implanter is also provided.
Abstract:
A method for fabricating a semiconductor-based device includes providing a substrate including a semiconductor layer, forming a gate dielectric layer on the semiconductor layer, forming a plasma including deuterium, plasma implanting deuterium from the plasma into the substrate, and annealing the substrate to promote passivation of the interface between the dielectric layer and the semiconductor layer.
Abstract:
A system, apparatus, and method to provide a systematic assessment learning approach that is utilized through a computing device to determine its users sport IQ score for one or more sports is disclosed. The system includes a multi-dimensional, systematic learning assessment processor to correlate answered questions and compute the sport IQ-score. In some cases, the questions in the database may include videos of sport content and other associated sport content. The system presents a quantifiable metric of a user's performance potential in a sport and provides a learning program for developing the user's skills across multiple dimensions.
Abstract:
A method for responding to a failure of hardware locus of at a communication installation having a plurality of control apparatuses for controlling a plurality of processes distributed among a plurality of hardware loci, the hardware loci including at least one spare hardware locus, includes the steps of: (a) Shifting control of a failed process from an initial control apparatus to an alternate control apparatus located at an alternate hardware locus than the failed hardware locus. The failed process is a respective process controlled by the initial control apparatus located at the failed hardware locus. (b) Relocating the respective control apparatuses located at the failed hardware locus to a spare hardware locus. (c) Shifting control of the failed process from the alternate control apparatus to the initial control apparatus relocated at the spare hardware locus.
Abstract:
Methods and apparatus that introduce, within the ion implant chamber or an isolated chamber in communication therewith, the capability to remove contaminants and oxide surface layers on a wafer surface prior to ion implantation, are disclosed. The mechanisms for removal of contaminants include conducting: a low energy plasma etch, heating the wafer and application of ultraviolet illumination, either in combination or individually. As a result, implantation can occur immediately after the cleaning/preparation process without the contamination potential of exposure of the wafer to an external environment. The preparation allows for the removal of surface contaminants, such as water vapor, organic materials and surface oxides.
Abstract:
A computer implemented web based access control facility for a distributed environment, which allows users to request for access, take the request through appropriate approval work flow and finally make it available to the users and applications. This program also performs an automatic task of verifying the health of data, access control data as well as the entitlements, to avoid malicious user access. The system also provides an active interface to setup a backup, to delegate the duty in absence. Thus this system provides a comprehensive facility to grant, re-certify and control the entitlements and users in a distributed environment.
Abstract:
A computer implemented web based access control facility for a distributed environment, which allows users to request for access, take the request through appropriate approval work flow and finally make it available to the users and applications. This program also performs an automatic task of verifying the health of data, access control data as well as the entitlements, to avoid malicious user access. The system also provides an active interface to setup a backup, to delegate the duty in absence. Thus this system provides a comprehensive facility to grant, re-certify and control the entitlements and users in a distributed environment.
Abstract:
Maneuvers of a controlled vehicle, such as a car, traveling at moderate to high speeds are planned by propagating cost waves in a configuration space using two search strategies referred to as budding and differential budding. Control is achieved by monitoring properties of the controlled vehicle and adjusting control parameters to achieve motion relative to a frame of reference. The frame of reference may change before the transformation to configuration space occurs. The method transforms goals, obstacles, and the position of the controlled vehicle in task space to a configuration space based on the position of these objects relative to a moving frame of reference. The method also determines a local neighborhood of possible motions based on the control capabilities of the vehicle. In one embodiment, the controlled parameters are time derivatives of the monitored properties. A variation of the method provides for the parallel computation of the configuration space. In one embodiment of the parallel computation, the case where two processes are used, a first process and configuration space would be used to plan. A second process and configuration space would be used to read the setpoints which are sent as control directives to the vehicle.
Abstract:
A method for responding to a failure of hardware locus of at a communication installation having a plurality of control apparatuses for controlling a plurality of processes distributed among a plurality of hardware loci, the hardware loci including at least one spare hardware locus, includes the steps of: (a) Shifting control of a failed process from an initial control apparatus to an alternate control apparatus located at an alternate hardware locus than the failed hardware locus. The failed process is a respective process controlled by the initial control apparatus located at the failed hardware locus. (b) Relocating the respective control apparatuses located at the failed hardware locus to a spare hardware locus. (c) Shifting control of the failed process from the alternate control apparatus to the initial control apparatus relocated at the spare hardware locus.
Abstract:
A method for responding to a failure of hardware locus of at a communication installation having a plurality of control apparatuses for controlling a plurality of processes distributed among a plurality of hardware loci, the hardware loci including at least one spare hardware locus, includes the steps of: (a) Shifting control of a failed process from an initial control apparatus to an alternate control apparatus located at an alternate hardware locus than the failed hardware locus. The failed process is a respective process controlled by the initial control apparatus located at the failed hardware locus. (b) Relocating the respective control apparatuses located at the failed hardware locus to a spare hardware locus. (c) Shifting control of the failed process from the alternate control apparatus to the initial control apparatus relocated at the spare hardware locus.