摘要:
An input/output (IO) interface includes a data encoder which encodes each of a plurality of pieces of parallel data having different timings and generates a plurality of pieces of encoded data, and an alternating current (AC) coupling transmission unit which transmits the plurality of encoded data in an AC coupling method. The data encoder compares first parallel data with second parallel data from among the plurality of pieces of parallel data on a bit-by-bit basis and obtains the number of bits whose logic states have transited between the first parallel data and the second parallel data. When the number of bits whose logic states have transited is greater than or equal to a reference number of bits, the data encoder inverts bit values of the second parallel data to generate the encoded data. When the number of bits whose logic states have transited is less than the reference number of bits, the data encoder maintains the bit values of the second parallel data to generate the encoded data.
摘要:
An input/output (IO) interface includes a data encoder which encodes each of a plurality of pieces of parallel data having different timings and generates a plurality of pieces of encoded data, and an alternating current (AC) coupling transmission unit which transmits the plurality of encoded data in an AC coupling method. The data encoder compares first parallel data with second parallel data from among the plurality of pieces of parallel data on a bit-by-bit basis and obtains the number of bits whose logic states have transited between the first parallel data and the second parallel data. When the number of bits whose logic states have transited is greater than or equal to a reference number of bits, the data encoder inverts bit values of the second parallel data to generate the encoded data. When the number of bits whose logic states have transited is less than the reference number of bits, the data encoder maintains the bit values of the second parallel data to generate the encoded data.
摘要:
A data mask system includes a processor providing control signals including a command signal, an address signal, and a data signal, a data mask processor receiving the control signals and providing either write data or masked data in response to the control signals, and generating data mask information and a data mask selection signal from at least one of the control signals, and a data mask register unit receiving the data mask selection signal, storing the data mask information, selecting a subset of the stored data mask information in response to the data mask selection signal, and returning selected data mask information to the data mask processor. The data mask processor receives the selected data mask information from the data mask register unit and provides the masked data as a result of performing a data mask operation on the data signal according to the selected data mask information.
摘要:
A memory device is configured to operate in first and second data input/output modes. The memory device includes a first electrode pad, a second electrode pad, a clock signal line, a first switching unit, and a second switching unit. The clock signal line is configured to transmit a clock to an integrated circuit inside the memory device. The first switching unit switches to electrically connect the first electrode pad and the clock signal line in response to a control signal occurring for the first data input/output mode. The second switching unit switches to electrically connect the second electrode pad and the clock signal line in response to an inverse signal of the control signal occurring for the second data input/output mode.
摘要:
Provided are a digital phase interpolator, which performs linear phase interpolation irrelevantly to input order of two input signals, and a semi-digital delay locked loop (DLL), which includes and controls the same. The phase interpolator includes: a first clocked inverter controlled by a phase indicating signal and providing a first output signal to a common output terminal by inverting a first input signal, and a second clocked inverter controlled by the phase indicating signal and providing a second output signal to the common output terminal by inverting the second input signal. The second clocked inverter is clocked by the first input signal when the phase indicating signal is in a first logic state, and the first clocked inverter is clocked by the second input signal when the phase indicating signal is in a second logic state. The phase indicating signal indicates a lead/lag phase relationship between the first and second input signals and is generated in a controller of a circuit of the semi-digital DLL.
摘要:
A memory device is configured to operate in first and second data input/output modes. The memory device includes a first electrode pad, a second electrode pad, a clock signal line, a first switching unit, and a second switching unit. The clock signal line is configured to transmit a clock to an integrated circuit inside the memory device. The first switching unit switches to electrically connect the first electrode pad and the clock signal line in response to a control signal occurring for the first data input/output mode. The second switching unit switches to electrically connect the second electrode pad and the clock signal line in response to an inverse signal of the control signal occurring for the second data input/output mode.
摘要:
A memory device is configured to operate in first and second data input/output modes. The memory device includes a first electrode pad, a second electrode pad, a clock signal line, a first switching unit, and a second switching unit. The clock signal line is configured to transmit a clock to an integrated circuit inside the memory device. The first switching unit switches to electrically connect the first electrode pad and the clock signal line in response to a control signal occurring for the first data input/output mode. The second switching unit switches to electrically connect the second electrode pad and the clock signal line in response to an inverse signal of the control signal occurring for the second data input/output mode.
摘要:
A memory device is configured to operate in first and second data input/output modes. The memory device includes a first electrode pad, a second electrode pad, a clock signal line, a first switching unit, and a second switching unit. The clock signal line is configured to transmit a clock to an integrated circuit inside the memory device. The first switching unit switches to electrically connect the first electrode pad and the clock signal line in response to a control signal occurring for the first data input/output mode. The second switching unit switches to electrically connect the second electrode pad and the clock signal line in response to an inverse signal of the control signal occurring for the second data input/output mode.
摘要:
A semiconductor chip package includes a substrate, a first layer disposed on the substrate and a second layer substantially similar to and disposed on the first layer. The first layer has a first input/output (I/O) circuit, a first through-via connected to the first input/output (I/O) circuit and a second through-via that is not connected to the first I/O circuit. The second layer has a second I/O circuit, a third through-via connected to the second I/O circuit and a fourth through-via that is not connected to the second I/O circuit. The first through-via is connected to the fourth through-via, and the second through-via is connected to the third through-via. The package maybe fabricated by stacking the layers, and changing the orientation of the second layer relative to the first to ensure that the first through-via is connected to the fourth through-via, and the second through-via is connected to the third through-via.
摘要:
A stacked semiconductor memory device according to the inventive concepts may include a plurality of memory chips stacked above a processor chip, a plurality of TSVs, and I/O buffers. The TSVs may pass through the memory chips and are connected to the processor chip. I/O buffers may be coupled between all or part of the memory chips and the TSVs and may be selectively activated on the basis of defective states of the TSVs.
摘要翻译:根据本发明构思的叠层半导体存储器件可以包括堆叠在处理器芯片上方的多个存储器芯片,多个TSV和I / O缓冲器。 TSV可以通过存储器芯片并且连接到处理器芯片。 I / O缓冲器可以耦合在所有或部分存储器芯片和TSV之间,并且可以基于TSV的故障状态来选择性地激活。