摘要:
Systems and methods to protect a mask from being contaminated by airborne particles are described. The systems and methods include providing a reticle secured in a two-part cover. The two part cover includes a removable protection device used to protect the reticle from contaminants. The cover can be held inside a pod or box that can be used to transport the cover through a lithography system from an atmospheric section to a vacuum section. While in the vacuum section, the removable cover can be moved during an exposure process during which a pattern on the reticle can be formed on a wafer.
摘要:
Systems and methods to protect a mask from being contaminated by airborne particles are described. The systems and methods include providing a reticle secured in a two-part cover. The two part cover includes a removable protection device used to protect the reticle from contaminants. The cover can be held inside a pod or box that can be used to transport the cover through a lithography system from an atmospheric section to a vacuum section. While in the vacuum section, the removable cover can be moved during an exposure process during which a pattern on the reticle can be formed on a wafer.
摘要:
Systems and methods to protect a mask from being contaminated by airborne particles are described. The systems and methods include providing a reticle secured in a two-part cover. The two part cover includes a removable protection device used to protect the reticle from contaminants. The cover can be held inside a pod or box that can be used to transport the cover through a lithography system from an atmospheric section to a vacuum section. While in the vacuum section, the removable cover can be moved during an exposure process during which a pattern on the reticle can be formed on a wafer.
摘要:
Systems and methods to protect a mask from being contaminated by airborne particles are described. The systems and methods include providing a reticle secured in a two-part cover. The two part cover includes a removable protection device used to protect the reticle from contaminants. The cover can be held inside a pod or box that can be used to transport the cover through a lithography system from an atmospheric section to a vacuum section. While in the vacuum section, the removable cover can be moved during an exposure process during which a pattern on the reticle can be formed on a wafer.
摘要:
A system and method are used to protect a mask from being contaminated by airborne particles. They include providing a reticle secured in a two-part cover. The two part cover includes a removable protection device used to protect the reticle from contaminants. The cover can be held inside a pod or box that can be used to transport the cover through a lithography system from an atmospheric section to a vacuum section. While in the vacuum section, the removable cover can be moved during an exposure process during which a pattern on the reticle can be formed on a wafer.
摘要:
A system and method are used to protect a mask from being contaminated by airborne particles. They include providing a reticle secured in a two-part cover. The two part cover includes a removable protection device used to protect the reticle from contaminants. The cover can be held inside a pod or box that can be used to transport the cover through a lithography system from an atmospheric section to a vacuum section. While in the vacuum section, the removable cover can be moved during an exposure process during which a pattern on the reticle can be formed on a wafer.
摘要:
A lithographic projection apparatus includes a radiation system for providing a projection beam of radiation having a wavelength &lgr;1 smaller than 50 nm; a support structure for supporting patterning structure, the patterning structure serving to pattern the projection beam according to a desired pattern; a substrate table for holding a substrate; and a projection system for projecting the patterned beam onto a target portion of the substrate. The apparatus further includes a radiation sensor which is located so as to be able to receive radiation out of the projection beam, said sensor comprising a radiation-sensitive material which converts incident radiation of wavelength &lgr;1 into secondary radiation; and sensing means capable of detecting said secondary radiation emerging from said layer.
摘要:
A positioning device has first and second object holders that are guided over a guiding surface extending parallel to an X-direction and parallel to a Y-direction perpendicular to the X-direction and which are displaceable over the guiding surface from a first position into a second position by means of a displacement system. The displacement system includes a first displacement unit and a second displacement unit to which the object holders can be alternately coupled. The first displacement unit is suitable for carrying out a first series of positioning steps of the first object holder in the first position and for displacing the first object holder from the first position into an intermediate position between the first and second positions. The second displacement unit is suitable for carrying out a second series of positioning steps of the second object holder in the second position, simultaneously with and independently of the first displacement unit, and for displacing the second object holder from the second position into the intermediate position. In the intermediate position, the object holders are exchanged, after which the first series of positioning steps can be carried out by the first displacement unit with the second object holder in the first position and the second series of positioning steps can be carried out by the second displacement unit with the first object holder in the second position. The positioning device is suitable for use in a lithographic device to carry out an exposure process with a first semiconductor substrate in an exposure position and, simultaneously therewith and independently thereof, a characterization process with a second semiconductor substrate in a characterization position.
摘要:
A supporting device (53) provided with a first part (69), a second part (71), and a gas spring (73) for supporting the second part relative to the first part parallel to a support direction (Z). The gas spring (73) comprises a pressure chamber (75) which is provided in an intermediate part (79) and is bounded by a piston (81) which is displaceable in the intermediate part (79) parallel to the support direction and is supported perpendicularly to the support direction by means of a static gas bearing (85). A stiffness of the supporting device parallel to the support direction is thus substantially entirely determined by a stiffness of the gas spring, and a low stiffness can be achieved through a suitable design of the gas spring. A transmission of vibrations directed parallel to the support direction from the first part to the second part is prevented as much as possible thereby. The invention also relates to a lithography device having a plurality of such supporting devices.
摘要:
In a lithographic apparatus using exposure radiation of a relatively short wavelength, e.g. 157 or 126 nm, a laminar flow of N2 is provided across parts of the beam path in or adjacent to moving components of the apparatus. The laminar flow is faster than the maximum speed of the moving components and the diffusion rate of air thereby minimizing the contamination of the N2 by mixing with air. Laminar flow may be ensured by providing partitions to divide the beam path into separate spaces, by covering rough or non-planar surfaces in components on or adjacent to the laminar flow and by providing aerodynamic members.
摘要翻译:在使用相对较短波长的曝光辐射的光刻设备中,例如, 157或126nm,在设备的移动部件中或与其邻近的横梁的横跨两部分提供了N 2层的流动。 层流比运动部件的最大速度快,空气的扩散速度更快,从而通过与空气混合使N 2 CO 2的污染最小化。 可以通过提供隔板来确保层流,通过覆盖层流上或邻近层流中的组分中的粗糙或非平面表面并且通过提供空气动力学构件来将束路分割成单独的空间。