摘要:
The object of the present invention is to suppress the increase of the contact resistance at the interface between the metal layer and the silicon plug in the wiring structure in which a metal layer is formed on and connected to a silicon plug. For its achievement, a lower semiconductor layer (drain) of a vertical-type MISFET is connected to an intermediate metal layer via an underlying plug composed of a polycrystalline silicon film, and a trap layer composed of a silicon nitride (TiN) film is formed on a part of the surface of the intermediate metal layer so as to surround the plug. The trap layer is formed in order to prevent an undesired high-resistance oxide layer from being formed at the interface between the plug and the intermediate metal layer.
摘要:
A structure obtaining a desired integrated circuit by sticking together a plurality of semiconductor substrates and electrically connecting integrated circuits formed on semiconductor chips of the respective semiconductor substrates is provided, and a penetrating electrode penetrating between a main surface and a rear surface of each of the semiconductor substrates and a penetrating separation portion separating the penetrating electrode are separately arranged. Thereby, after forming an insulation trench portion for formation of the penetrating separation portion on the semiconductor substrate, a MIS•FET is formed, and then, a conductive trench portion for formation of the penetrating electrode can be formed. Therefore, element characteristics of a semiconductor device having a three-dimensional structure can be improved.
摘要:
A structure obtaining a desired integrated circuit by sticking together a plurality of semiconductor substrates and electrically connecting integrated circuits formed on semiconductor chips of the respective semiconductor substrates is provided, and a penetrating electrode penetrating between a main surface and a rear surface of each of the semiconductor substrates and a penetrating separation portion separating the penetrating electrode are separately arranged. Thereby, after forming an insulation trench portion for formation of the penetrating separation portion on the semiconductor substrate, a MIS·FET is formed, and then, a conductive trench portion for formation of the penetrating electrode can be formed. Therefore, element characteristics of a semiconductor device having a three-dimensional structure can be improved.
摘要:
In order to improve the manufacturing yield of a semiconductor device having a three-dimensional structure in which a plurality of chips are stacked and attached to each other, the opening shape of each of conductive grooves (4A) formed in each chip (C2) obtained from a wafer (W2) is rectangular, and the number of the conductive grooves (4A) whose long-sides are directed in a Y direction and the number of the conductive grooves (4A) whose long-sides are directed in an X direction perpendicular to the Y direction are made to be approximately equal to each other number in the entire wafer (W2), whereby the film stress upon embedding of a conductive film into the interior of the conductive grooves is reduced, and generation of exfoliation and micro-cracks in the conductive film or warpage and cracks of the wafer (W2) are prevented.
摘要:
In order to improve the manufacturing yield of a semiconductor device having a three-dimensional structure in which a plurality of chips are stacked and attached to each other, the opening shape of each of conductive grooves (4A) formed in each chip (C2) obtained from a wafer (W2) is rectangular, and the number of the conductive grooves (4A) whose long-sides are directed in a Y direction and the number of the conductive grooves (4A) whose long-sides are directed in an X direction perpendicular to the Y direction are made to be approximately equal to each other number in the entire wafer (W2), whereby the film stress upon embedding of a conductive film into the interior of the conductive grooves is reduced, and generation of exfoliation and micro-cracks in the conductive film or warpage and cracks of the wafer (W2) are prevented.
摘要:
When the entire amount of conductive metal mixed powder made of copper, manganese, and germanium is 100 parts by weight, the metal mixed powder is formed by mixing 4.0 to 13.0 parts manganese by weight, 0.2 to 1.4 parts germanium by weight, and 85.6 to 95.8 parts copper by weight, and 0 to 10 parts glass powder by weight and 0 to 10 parts copper-oxide powder by weight are mixed relative to the entire amount (100 parts by weight) of these metal components. The obtained resistive paste is then baked, and the resistive composition having the low resistance value and low TCR may be obtained. In addition, a resistor is made by forming the resistive element upon a substrate.
摘要:
A resistive material containing metallic powder including copper, manganese, and aluminum, glass powder and/ or copper oxide powder, and a vehicle is provided. The metallic powder is made by mixing 80 to 85 weight percent copper, 8 to 16 weight percent manganese, and 2 to 7 weight percent aluminum. A maximum of 10 weight percent glass powder and/ or copper oxide powder and 10 to 15 weight percent vehicle relative to the entire 100 weight percent metal mixed powder are added. The resulting resistive material is then wintered in an inactive atmosphere, thereby providing a resistor and a resistive element having target characteristics such as a low resistance, a low TCR value, and a low thermo-electromotive force.