Abstract:
Magnetic memory having separate read and write paths is disclosed. The magnetic memory unit includes a ferromagnetic strip having a first end portion with a first magnetization orientation, an opposing second end portion with a second magnetization orientation, and a middle portion between the first end portion and the second end portion, the middle portion having a free magnetization orientation. The first magnetization orientation opposes the second magnetization orientation. A tunneling barrier separates a magnetic reference layer from the middle portion forming a magnetic tunnel junction. A bit line is electrically coupled to the second end portion. A source line is electrically coupled to the first end portion and a read line is electrically coupled to the magnetic tunnel junction.
Abstract:
An apparatus and associated method for a non-volatile memory cell with a phonon-blocking insulating layer. In accordance with various embodiments, a magnetic stack has a tunnel junction, ferromagnetic free layer, pinned layer, and an insulating layer that is constructed of an electrically and thermally insulative material that blocks phonons while allowing electrical transmission through at least one conductive feature.
Abstract:
A magnetic tunnel junction having a ferromagnetic free layer and a ferromagnetic pinned reference layer, each having an out-of-plane magnetic anisotropy and an out-of-plane magnetization orientation, the ferromagnetic free layer switchable by spin torque. The magnetic tunnel junction includes a ferromagnetic assist layer proximate the free layer, the assist layer having a low magnetic anisotropy less than 700 Oe and positioned to apply a magnetic field on the free layer.
Abstract:
A magnetic sensor assembly includes first and second shields each comprised of a magnetic material. The first and second shields define a physical shield-to-shield spacing. A sensor stack is disposed between the first and second shields and includes a seed layer adjacent the first shield, a cap layer adjacent the second shield, and a magnetic sensor between the seed layer and the cap layer. At least a portion of the seed layer and/or the cap layer comprises a magnetic material to provide an effective shield-to-shield spacing of the magnetic sensor assembly that is less than the physical shield-to-shield spacing.
Abstract:
Magnetic memory having separate read and write paths is disclosed. The magnetic memory unit includes a ferromagnetic strip having a first end portion with a first magnetization orientation, an opposing second end portion with a second magnetization orientation, and a middle portion between the first end portion and the second end portion, the middle portion having a free magnetization orientation. The first magnetization orientation opposes the second magnetization orientation. A tunneling barrier separates a magnetic reference layer from the middle portion forming a magnetic tunnel junction. A bit line is electrically coupled to the second end portion. A source line is electrically coupled to the first end portion and a read line is electrically coupled to the magnetic tunnel junction.
Abstract:
A magnetic tunnel junction having a ferromagnetic free layer and a ferromagnetic pinned reference layer, each having an out-of-plane magnetic anisotropy and an out-of-plane magnetization orientation, the ferromagnetic free layer switchable by spin torque. The magnetic tunnel junction includes a ferromagnetic assist layer proximate the free layer, the assist layer having a low magnetic anisotropy less than 700 Oe and positioned to apply a magnetic field on the free layer.
Abstract:
An apparatus and associated method for a non-volatile memory cell with a phonon-blocking insulating layer. In accordance with various embodiments, a magnetic stack has a tunnel junction, ferromagnetic free layer, pinned layer, and an insulating layer that is constructed of an electrically and thermally insulative material that blocks phonons while allowing electrical transmission through at least one conductive feature.
Abstract:
A magnetic sensor assembly includes first and second shields each comprised of a magnetic material. The first and second shields define a physical shield-to-shield spacing. A sensor stack is disposed between the first and second shields and includes a seed layer adjacent the first shield, a cap :layer adjacent the second shield, and a magnetic sensor between the seed layer and the cap layer. At least a portion of the seed layer and/or the cap layer comprises a magnetic material to provide an effective shield-to-shield spacing of the magnetic sensor assembly that is less than the physical shield-to-shield spacing.