摘要:
Method for employing optical state-change organic polymer films as information-storage layers in optoelectronic, high-density memories, and high-density optoelectronic memories produced by the method. In certain embodiments, the optical state-change organic polymer films can be manufactured to exhibit two different, stable optical states, one transparent, and one light-absorbing and/or light-reflecting, that can be locally, stably, and reversibly induced by application of an electrical field. In various embodiments, information is digitally encoded in an information-storage layer as bits, the value of each bit represented by the optical state of an area of the information-storage layer corresponding to the bit. In various embodiments, the optical state of a small region of the information-storage layer can be determined by exposing the small region to visible light, and determining whether or not a photodiode layer in an information-storage medium below the information-storage layer generates an electrical current in response to illumination.
摘要:
Method for employing optical state-change organic polymer films as information-storage layers in optoelectronic, high-density memories, and high-density optoelectronic memories produced by the method. In certain embodiments, the optical state-change organic polymer films can be manufactured to exhibit two different, stable optical states, one transparent, and one light-absorbing and/or light-reflecting, that can be locally, stably, and reversibly induced by application of an electrical field. In various embodiments, information is digitally encoded in an information-storage layer as bits, the value of each bit represented by the optical state of an area of the information-storage layer corresponding to the bit. In various embodiments, the optical state of a small region of the information-storage layer can be determined by exposing the small region to visible light, and determining whether or not a photodiode layer in an information-storage medium below the information-storage layer generates an electrical current in response to illumination.
摘要:
A method of fabricating a silicon carbide imprint stamp is disclosed. A mold layer has a cavity formed therein. A spacer is formed in the cavity to reduce a first feature size of the cavity. A casting process is used to form a feature and a foundation layer connected with the feature. The spacer operatively reduces the first feature size of the feature to a second feature size that is less than the lithography limit. The foundation layer and the feature are unitary whole made from a material comprising silicon carbide (SiC), a material that is harder than silicon (Si) alone. Consequently, the silicon carbide imprint stamp has a longer service lifetime because it can endure several imprinting cycles without wearing out or breaking. The longer service lifetime makes the silicon carbide imprint stamp economically feasible to manufacture as the manufacturing cost can be recouped over the service lifetime.
摘要:
A micro-casted silicon carbide nano-imprinting stamp and method of making a micro-casted silicon carbide nano-imprinting stamp are disclosed. A micro-casting technique is used to form a foundation layer and a plurality of nano-sized features connected with the foundation layer. The foundation layer and the nano-sized features are unitary whole that is made entirely from a material comprising silicon carbide (SiC) which is harder than silicon (Si) alone. As a result, the micro-casted silicon carbide nano-imprinting stamp has a longer service lifetime because it can endure several imprinting cycles without wearing out or breaking. The longer service lifetime makes the micro-casted silicon carbide nano-imprinting stamp economically feasible to manufacture as the manufacturing cost can be recouped over the service lifetime.
摘要:
A method of fabricating an imprint stamp is disclosed. The imprint stamp includes a plurality of layers of material that are deposited in a deposition order. After deposition, each layer is patterned and then etched to form a portion of an application specific imprint pattern. The portion includes variations in a topography of the layer. The application specific imprint pattern comprises a plurality of features that are defined by the variations in the topographies of all of the layers of material that were deposited, patterned, and etched. The imprint stamp can be used in a soft-lithography process by pressing the application specific imprint pattern into a mask layer in which the application specific imprint pattern is replicated.
摘要:
A random access memory (MRAM) that includes a magnetic memory cell that is switchable between two states under the influence of a magnetic field. The MARAM also includes an electrical bit line coupled to the magnetic memory cell for generating the magnetic field. The electrical bit line includes a conductive component and a magnetic component to guide magnetic flux associated with the magnetic field towards the magnetic memory cell. A thermal insulator is positioned between the conductive portion and the magnetic memory cell, and the magnetic component has at least one guiding portion that extends from the conductive component towards the magnetic memory cell to guide the magnetic flux around at least a portion of the thermal insulator.
摘要:
A method of forming a hardened nano-imprinting stamp is disclosed. The hardened nano-imprinting stamp includes a plurality of silicon-based nano-sized features that have an hardened shell of silicon carbide, silicon nitride, or silicon carbide nitride. The hardened shell is made harder than the underlying silicon by a plasma carburization and/or a plasma nitridation process. During the plasma process atoms of carbon and/or nitrogen bombard and penetrate a plurality of exposed surfaces of the nano-sized features and chemically react with the silicon to form the hardened shell of silicon carbide, silicon nitride, or silicon carbide nitride.
摘要:
A method for fabricating sub-lithographic sized line and space features is disclosed. The method includes the use of conventional microelectronics processing techniques such as photolithographic patterning and etching, polysilicon deposition, polysilicon oxidation, polysilicon oxide etching, polysilicon wet and plasma etching, and chemical mechanical planarization. Polysilicon line features having a feature size that is greater than or equal to a lithography limit are oxidized in a plasma that includes an oxygen gas. The oxidation forms a sub-lithographic sized polysilicon core and an oxidized polysilicon mantel that includes portions along sidewall surfaces of the sub-lithographic sized polysilicon core that also have a sub-lithographic feature size. After planarization and a plasma etch that is selective to either the polysilicon or the oxidized polysilicon, a plurality of sub-lithographic sized line and space patterns are formed. Those line and space patterns can be used for an imprinting stamp for nano-imprint lithography.
摘要:
A micro-casted silicon carbide nano-imprinting stamp and method of making a micro-casted silicon carbide nano-imprinting stamp are disclosed. A micro-casting technique is used to form a foundation layer and a plurality of nano-sized features connected with the foundation layer. The foundation layer and the nano-sized features are unitary whole that is made entirely from a material comprising silicon carbide (SiC) which is harder than silicon (Si) alone. As a result, the micro-casted silicon carbide nano-imprinting stamp has a longer service lifetime because it can endure several imprinting cycles without wearing out or breaking. The longer service lifetime makes the micro-casted silicon carbide nano-imprinting stamp economically feasible to manufacture as the manufacturing cost can be recouped over the service lifetime.
摘要:
A low heat loss and small contact area electrode structure for a phase change media memory device is disclosed. The memory device includes a composite electrode that includes a dielectric mandrel that is connected with a substrate and having a tapered shape that terminates at a vertex. An electrically conductive material conformally covers the dielectric mandrel and terminates at a tip. A first dielectric layer covers all of the composite electrode except an exposed portion of the composite electrode that is adjacent to the tip. A phase change media is in contact with the exposed portion. The exposed portion is only a small percentage of an overall surface area of the composite electrode so that a contact footprint between the exposed portion and the phase change media is small relative to a surface area of the phase change media and Joule heat transfer from the phase change media into the composite electrode is reduced.