Abstract:
To provide a novel light-emitting element or a novel light-emitting device with high emission efficiency and low power consumption, a light-emitting element having a plurality of light-emitting layers between a pair of electrodes includes a lower electrode, a first light-emitting layer over the lower electrode, a charge-generation layer over the first light-emitting layer, a second light-emitting layer over the charge-generation layer, and an upper electrode over the second light-emitting layer. An emission spectrum of the first light-emitting layer peaks at a longer wavelength than an emission spectrum of the second light-emitting layer. A distance of between a bottom surface of the upper electrode and a bottom surface of the first light-emitting layer is less than or equal to 130 nm.
Abstract:
To provide a novel light-emitting element or a novel light-emitting device with high emission efficiency and low power consumption, a light-emitting element having a plurality of light-emitting layers between a pair of electrodes includes a lower electrode, a first light-emitting layer over the lower electrode, a charge-generation layer over the first light-emitting layer, a second light-emitting layer over the charge-generation layer, and an upper electrode over the second light-emitting layer. An emission spectrum of the first light-emitting layer peaks at a longer wavelength than an emission spectrum of the second light-emitting layer. A distance of between a bottom surface of the upper electrode and a bottom surface of the first light-emitting layer is less than or equal to 130 nm.
Abstract:
To provide a photoelectric conversion device including a passivation film in which an opening for connection to an electrode does not need to be provided. The photoelectric conversion device includes, between a pair of electrodes, a silicon substrate having p-type conductivity; a silicon semiconductor layer having n-type conductivity which is provided over one surface of the silicon substrate and in contact with one of the pair of electrodes; and an oxide semiconductor layer having p-type conductivity which is provided over the other surface of the silicon substrate and in contact with the other of the pair of electrodes. The oxide semiconductor layer is formed using an inorganic compound which contains an oxide of a metal belonging to any of Groups 4 to 8 in the periodic table as its main component and whose band gap is greater than or equal to 2 eV.
Abstract:
An imaging device with excellent imaging performance is provided. An imaging device that easily performs imaging under a low illuminance condition is provided. A low power consumption imaging device is provided. An imaging device with small variations in characteristics between its pixels is provided. A highly integrated imaging device is provided. A photoelectric conversion element includes a first electrode, and a first layer, a second layer, and a third layer. The first layer is provided between the first electrode and the third layer. The second layer is provided between the first layer and the third layer. The first layer contains selenium. The second layer contains a metal oxide. The third layer contains a metal oxide and also contains at least one of a rare gas atom, phosphorus, and boron. The selenium may be crystalline selenium. The second layer may be a layer of an In—Ga—Zn oxide including c-axis-aligned crystals.
Abstract:
A light-emitting element with improved heat resistance is provided without losing its advantages such as thinness, lightness, and low power consumption. A light-emitting element is provided which includes a first electrode, a second electrode, and an EL layer between the first electrode and the second electrode, in which the EL layer includes a layer containing a condensed aromatic compound or a condensed heteroaromatic compound, and a layer containing 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline (abbreviation: NBPhen) in contact with the layer containing the condensed aromatic compound or the condensed heteroaromatic compound.
Abstract:
A tandem light-emitting element employing an inverted-structure is provided. The light-emitting element includes a cathode, a first EL layer over the cathode, a second EL layer over the first EL layer, an anode over the second EL layer, and an intermediate layer. The intermediate layer is between the first EL layer and the second EL layer. The intermediate layer includes a first layer, a second layer over the first layer, and a third layer over the second layer. The first layer includes a hole-transport material and an electron acceptor. The third layer includes an alkali metal or an alkaline earth metal. The second layer includes an electron-transport material.
Abstract:
To provide a novel light-emitting element or a novel light-emitting device with high emission efficiency and low power consumption, a light-emitting element having a plurality of light-emitting layers between a pair of electrodes includes a lower electrode, a first light-emitting layer over the lower electrode, a charge-generation layer over the first light-emitting layer, a second light-emitting layer over the charge-generation layer, and an upper electrode over the second light-emitting layer. An emission spectrum of the first light-emitting layer peaks at a longer wavelength than an emission spectrum of the second light-emitting layer. A distance of between a bottom surface of the upper electrode and a bottom surface of the first light-emitting layer is less than or equal to 130 nm.
Abstract:
To provide a photoelectric conversion device which has little light loss caused by light absorption in a window layer and has favorable electric characteristics. The photoelectric conversion device includes, between a pair of electrodes, a light-transmitting semiconductor layer which has one conductivity type and serves as a window layer, and a silicon semiconductor substrate having a conductivity type for forming a p-n junction or a silicon semiconductor layer having a conductivity type for forming a p-i-n junction. The light-transmitting semiconductor layer can be formed using an inorganic compound containing, as its main component, an oxide of a metal belonging to any of Groups 4 to 8 of the periodic table. The band gap of the metal oxide is greater than or equal to 2 eV.
Abstract:
An oxide semiconductor material having p-type conductivity and a semiconductor device using the oxide semiconductor material are provided. The oxide semiconductor material having p-type conductivity can be provided using a molybdenum oxide material containing molybdenum oxide (MoOy (2
Abstract:
A light-emitting element includes a cathode, an anode, a light-emitting layer, a first layer, a second layer, and a third layer. The first layer is provided between the cathode and the light-emitting layer. The second layer is provided between the light-emitting layer and the third layer and includes a region in contact with the third layer. The third layer is provided between the second layer and the anode and includes a region in contact with the anode. The first layer and the third layer each include an alkali metal or an alkaline earth metal. The second layer includes a material that has a function of transporting an electron.